
Automated Knowledge Engineering

Submitted in partial fulfilment

of the requirements of the degree of

Bachelor of Science (Honours)

of Rhodes University

Maanda Raudzingana

Grahamstown, South Africa

October 2014

Abstract

The knowledge acquisition process is a critical one in the development of knowledge based

systems. As the name suggests, these systems rely heavily on complete and accurate

knowledge. Consequently, the credibility of the knowledge stored in the knowledge base

has a direct influence on the performance of the overall system. For this reason, it is

primary that the process is conducted with caution and diligence. However, this is often

not the case owing to the difficulties inherent in the traditional approach of knowledge

acquisition, which involves physical collaboration between the domain experts and the

knowledge engineer. Automating the process would enable the efficient creation of prac-

tical knowledge-based systems.

The development of a modularized tool to enable the automated construction of knowledge

bases is discussed. This allows the construction and extension of knowledge bases by

domain experts, thereby eliminating the overhead common in the knowledge acquisition

phase. The results obtained during evaluation confirm the credibility of the generated

output and hence, the applicability of the developed tool.

ACM Computing Classification System Classification

Thesis classification under the ACM Computing Classification System (2012 version, valid

through 2013):

H.3.4 [Decision support systems]: Expert systems

L.4.5 [Health care information systems]

General-Terms: Human Factors, Verification

Acknowledgements

I would like to extend thanks to my supervisor, Dr Karen Bradshaw for her support and

guidance through out the duration of this research project. Her guidance and support

was key to the success of this project.

I would also like to thank the Computer Science department at Rhodes University for

providing the facilities used through out the year, thereby making the completion of this

project a reality.

A special thanks to friends and family for the support given through out the year.

This work was undertaken in the Distributed Multimedia CoE at Rhodes University, with

financial support from Telkom SA, Tellabs, Genband, Easttel, Bright Ideas 39, THRIP

and NRF SA (TP13070820716). The authors acknowledge that opinions, findings and

conclusions or recommendations expressed here are those of the author(s) and that none

of the above mentioned sponsors accept liability whatsoever in this regard.

Contents

1 Introduction 9

1.1 Problem statement . 9

1.2 Research goal . 9

1.3 Document structure . 10

2 Literature Review 11

2.1 Expert Systems . 11

2.1.1 Applications of Expert Systems . 12

2.1.2 Components of an Expert System 12

2.2 Knowledge Representation . 17

2.2.1 Knowledge Acquisition . 18

2.2.2 Knowledge Representation Schemes 19

2.3 Examples of Expert Systems . 25

2.4 Attempts at Knowledge Base Automation 29

2.5 Tools and Techniques . 35

2.5.1 Client Interface . 36

2.5.2 Intermediate Representation . 39

2

CONTENTS 3

2.5.3 Translation . 40

2.5.4 Testing . 42

2.6 Summary . 43

3 Knowledge Elicitation 44

3.1 Overview . 44

3.2 Knowledge Elicitation . 46

3.2.1 Information source . 47

3.2.2 Data elements of interest . 47

3.2.3 Storing of acquired data . 48

3.2.4 The user interface . 49

3.3 Intermediate Knowledge Generation . 53

3.3.1 XML Generetor . 53

3.4 Summary . 58

4 Rule Generation 59

4.0.1 Rule-based representation scheme 59

4.0.2 Problem domain . 60

4.0.3 Syntax of rule base . 60

4.0.4 Automated generation . 63

4.1 Summary . 72

CONTENTS 4

5 Evaluation of the Knowledge Base 73

5.1 Success criteria . 73

5.1.1 Representing knowledge as rules . 74

5.1.2 Reaching valid conclusions . 74

5.1.3 Execution by suitable inference engine 75

5.2 Manual evaluation . 75

5.3 Evaluation using VP-Expert shell . 79

5.3.1 Running the VP-Expert shell . 80

5.3.2 Test cases . 80

5.3.3 Limitations of VP-Expert expert system shell 86

5.4 Discussion . 87

5.5 Summary . 88

6 Conclusion 89

6.1 Research objectives . 89

6.2 Future work . 90

List of Figures

2.1 Components of an expert system . 13

3.1 Steps, input, and outputs of the modules involved in the knowledge base

generation process . 45

3.2 Screenshot of the KAT GUI . 50

3.3 Screenshot of dialogue confirming successful disease entry 52

3.4 Screenshot of error dialogue alerting the user of missing data 53

5.1 Structure of proposed inference engine . 76

5.2 Screenshot of VP-Expert interface showing an Anthrax diagnosis 83

5.3 Screenshot of VP-Expert interface showing an Botulism diagnosis 84

5.4 Screenshot of VP-Expert interface showing an Undecided conclusion 86

5

List of Tables

5.1 Results of inference step by the inference engine 79

5.2 Distribution of symptoms across diseases. 82

6

Listings

3.1 Human-readable representation . 48

3.2 Invoking the XML-generator . 55

3.3 Generation of XML-based representation 56

3.4 Extraction of a disease name . 56

3.5 Extraction of primary symptoms from a disease 57

3.6 Sample output of the XML generator . 57

4.1 Arrangment of different blocks . 62

4.2 Example of a simple knowledge base file 62

4.3 Rule type 1 . 63

4.4 Rule type 2 . 64

4.5 Rule type 3 . 64

4.6 Rule type 4 . 64

4.7 Invoking of the rule generator . 65

4.8 Method definition for Generate method . 66

4.9 Method definition for ShowActionsBlock method 67

4.10 Construction of a rule of Rule Type 1 . 69

4.11 Method definition for showQueryBlock method 70

7

LISTINGS 8

5.1 Example rule in the generated knowledge base 74

5.2 Example rule for executation by hypothetical inference engine 77

5.3 State of working memory before and after inference 78

5.4 Querying of symptoms by VP-Expert . 82

5.5 Querying of symptoms by the expert system in the second test case 84

5.6 Querying of symptoms by the expert system in the third test case 85

Chapter 1

Introduction

1.1 Problem statement

Knowledge engineering or knowledge acquisition is a critical process in the development of

expert systems. It is the process by which expert knowledge is integrated into a knowledge-

based system. For this reason, a substantial amount of research has been conducted in

an attempt to come up with more efficient and effective ways to go about this process.

However the process of knowledge engineering has inherent difficulties. These include

time constraints on the expert’s side hence rendering the expert inaccessible. In addition,

experts are unenthusiastic and usually, there exists a lack of communication between the

knowledge engineer and the expert. Furthermore, it has proved time consuming and

tedious to have a knowledge engineer reconfigure the knowledge base whenever new facts

and knowledge became available.

1.2 Research goal

The research aims to investigate the use of knowledge base construction tools available,

their strengths and weakness as well as current trends and issues in knowledge represen-

tation. Special emphasis is placed on the automation of knowledge base construction or

knowledge representation using the production system approach. This raises the question:

can the knowledge representation phase in expert systems development be automated with

the help of modern technologies? The research aims to find out if it is possible to elimi-

nate entirely the need for a knowledge engineer by automating the knowledge engineering

9

1.3. DOCUMENT STRUCTURE 10

process. This requires the automation of processes involved, i.e. vocabulary construction,

classification of domain objects and attributes attributes thereof, discovery of parameter

relationships and inter-dependencies, representation of core facts within the domain and

finally the presentation of a rule-based knowledge representation that can be executed by

a suitable inference engine [9]. With that said, the primary aim of the project is to present

an efficient approach to knowledge representation in the development of expert systems

by automating the knowledge engineering process. This will be achieved by developing

a modularized tool to enable the automated construction of knowledge bases. The gen-

erated knowledge base should 1) successfully represent as rules the knowledge gathered

from domain expert knowledge sources; 2) allow execution by a suitable system, and 3)

allow the executing program to reach valid conclusions. Over and above, the developed

tool should allow the extension of the generated knowledge base by domain experts.

1.3 Document structure

The research paper firstly discusses the findings from background research. This discus-

sion focuses on the concept of an expert system. Next, different representation schemes

are discussed. Several knowledge acquisition tools are discussed next, and finally, the

different tools to aid the development of acquisition tools are discussed. This makes up

Chapter 2 of the thesis.

The design and implementation of the preliminary modules of the developed system is

discussed in Chapter 3, focusing on the input, operation, and output of the modules.

Following the discussion on the preliminary modules, the design and implementation of

the core module of the system is discussed. The generation of rules is discussed, focusing

on the input of the rule generator, the different rule types implemented, and the structure

of resulting knowledge base. This makes up Chapter 4 of the thesis.

Chapter 5 discusses the evaluation of the output of rule generator, the actual knowl-

edge base. Results obtained from test cases are discussed.

Lastly, the outcome of the projects is given and coordinated with the project objectives.

Future work is suggested in an attempt to improve applicability of the research project

with regard to knowledge engineering.

Chapter 2

Literature Review

The aim of this chapter is to review issues around the development of expert systems.

With emphasis given to the knowledge representation process. An overview of expert

systems highlights the foundation and necessity of improvements in the representation of

knowledge. It has been argued that failure to represent effectively appropriate amounts of

knowledge in knowledge based systems results in limited performance during consultation

[36]. The discussion highlights the implications, and research and development trends

in knowledge acquisition. Knowledge representation schemes and their characteristics are

presented. Research efforts have influenced the development and refinement of automated

knowledge engineering tools. A few of these are reviewed. Finally, the tools and techniques

available for the development of these knowledge engineering tools are explored.

2.1 Expert Systems

An expert system [24] is an example of a knowledge based system whose primary purpose

is to mimic human reasoning. This is achieved by emulating the decision-making ability

of a human expert in a specific domain. A structured organization of knowledge, facts

and reasoning techniques is used to solve problems that would normally require human

expertise. The organized collection of facts and knowledge is known as the knowledge

base. This essentially houses the knowledge transferable to a user during consultation.

The expert system applies the facts stored in the knowledge base to arrive at a conclusion.

This is the purpose of the inference engine. Facts together with information provided by

the user are interpreted and evaluated to infer new knowledge. A representation language

11

2.1. EXPERT SYSTEMS 12

is used to express facts [19], with common representations including predicate calculus,

rules, graphs and decision trees . Expert systems are considered to be successful because

they are successful at transferring expert knowledge in a given problem domain. For

this reason, expert systems have seen widespread use in several domains. Expert system

technology is currently used to solve many industrial and commercial problems.

2.1.1 Applications of Expert Systems

Applications of the technology can be clustered into classes [20] such as diagnosis, trou-

bleshooting, prediction, configuration, decision making, knowledge publishing, monitoring

and control, design and manufacturing as well as debugging and instruction. Systems in

these classes often employ highly structured rules to enable them to achieve the decision-

making ability similar to that of a human. Successful examples include medical diagnostic

systems that are in use today in several medical facilities, computer network diagnostic

systems used by network administrators for network fault diagnosis, mission control sys-

tems used by military personnel, and the training and crisis management systems used by

different organizations. Recent literature has highlighted the apparent interest in integrat-

ing expert systems technology with existing applications in various domains [19]. These

include multimedia applications, accounting and business management applications, and

applications in the medical and educational domains. This widespread use of expert sys-

tems technology highlights the relevance of expert systems research and development in

this day and age.

2.1.2 Components of an Expert System

Three basic components make up an expert system: a knowledge base, an inference engine,

and a user interface. Some systems have a knowledge acquisition module to allow domain

experts to add new knowledge into the knowledge base. Shown in Figure 2.1 are the

different components of an expert system.

2.1. EXPERT SYSTEMS 13

Figure 2.1: Components of an expert system

These components work together to effectively transfer declarative and procedural knowl-

edge to the user upon consultation [42].

The Knowledge Base

The knowledge base is the store of facts and rules. It contains the domain knowledge

vital for problem solving, i.e., declarative knowledge. Knowledge is organized as facts,

objects, attributes and conditions [24]. During inference, the knowledge base is searched

and manipulated according to predefined rules of logic. The knowledge contained in

the knowledge base is commonly acquired through transfer from a human expert using

appropriate methods. The system thus represents the expert’s knowledge and expertise

in the specific domain. A human expert is known to possess extensive knowledge on a

given class of problems. Embedding such limited knowledge in a computer system has

proven to be an easier task compared to embedding large amounts of information from

different classes of problems [13].

Expert systems transfer human expertise. This has been described as intensive knowledge

specific to a domain [19]. According to Iancu et al. [19], the knowledge can be categorized

2.1. EXPERT SYSTEMS 14

into knowledge types: facts and theories about the domain, rules and procedures, global

strategies on solving problem types and finally, meta-knowledge.

Part of the contents of the knowledge base is facts. These are known items of information

of a given subject. In a medical scenario, the statement: ”Streptococcus pneumoniae

causes Pneumonia” can be considered a fact. This is information that is known and can

be proven. A collection of facts is housed in the knowledge base, which describe a given

subject in detail.

Besides facts, contained in the knowledge base are objects [24]. Objects are represen-

tations of real world entities, perceptible by one or more senses. In a medical context,

Pneumonia can be classified as an object. These objects have attributes that describe

them. The use of the facts and objects by the inference engine is governed by a set of

conditions or rules.

Uncertainty

It is rare that knowledge is certain. The incomplete, ambiguous and uncertain nature

of information introduces difficulties during the development of intelligent systems [36].

This introduces the need for expert systems to handle uncertain knowledge. In the early

days of expert systems development, marking a milestone in the development thereof,

was the introduction of a level of certainty in accumulation of evidence and confidence of

the hypothesis. These came to be known as certainty factors [8]. Certainty factors allow

an expert system to express a relative level of confidence, with a high factor denoting

an absolute level of confidence and a low factor denoting the least level of confidence. A

common approach to estimation of certainty is the use of probability theory. Sub-options

include objective probability, which makes use of frequency refraining from any interpre-

tation or degrees of confidence, and subjective probability, in which the lack of certainty

is quantified, hence reflecting a degree of belief. Common practice is to use either ap-

proach in conjunction with other estimation mechanisms customized to a suitable extent.

The PROSPECTOR system [13] handles uncertainty by assigning probabilities to conclu-

sions using established statistical rules and theories. However, the use of statistical rules

and theories introduces additional complexities with regard to statistical independence

and prior probabilities. In an attempt to avoid such complexities, a novel calculus of

certainty values was used to handle uncertainty in the MYCIN system. A statistical ap-

proach remains the most widely adopted approach to handling uncertainty during expert

systems development. Despite successes of most implementations in handling uncertain

knowledge, a point is yet to be reached where reasoning in the presence of vagueness and

2.1. EXPERT SYSTEMS 15

ignorance as well as recognition of the limits of knowledge bases by systems is possible

[13].

The Inference Engine

The inference engine [24] is the heart of an expert system. Invoked whenever a user

performs a query, the inference engine’s main purpose is to draw inferences from the

supplied information and the information contained in the knowledge base. Logical rules

are applied to the knowledge base in order to infer new knowledge [8]. This involves

effective comparison of available information, searching of goals and causal relationships

and finally the evaluation of the relative certainty of facts [24]. The inference engine

makes use of forward chaining and backward chaining strategies to go about inference.

Forward chaining

Forward chaining [8; 24] is one of the techniques used by the inference engine during

inference. This method starts from known data and proceeds with the data effectively

using inference rules to extract more data until the goal is reached. For this reason, it is

also known as data-driven reasoning. The engine searches the rule set for a rule whose

condition is satisfied and then infers the action effectively adding a new fact to the data

store. This method is favored for its ability to trigger new inferences as a result of the

reception of new data [16]. However, as a result of using forward chaining, more rules

than necessary may be executed resulting in an inefficient inference process.

Backward chaining

Backward chaining [8; 24], often used as an alternative or in conjunction with forward

chaining, is another technique for inference. Backward chaining starts from the goal and

attempts to find the evidence to prove it. This is also referred to as goal-driven reasoning.

The rule set is searched to find rules whose action parts or consequents match the goal.

When found, the rule is fired and the goal is proved. This process involves adding rules

to a list of goals that will have to be proven in order to prove the initial goal. The engine

sets aside the rule it is currently working with and then establishes a new goal to prove

the condition part of the rule. Searching takes place for rules that can prove the sub goal.

The process continues until no rules can be found that prove the current sub goal.

2.1. EXPERT SYSTEMS 16

The choice of method between forward and backward chaining is arguably dependent on

the problem domain in which the resulting system will be used.

The User Interface

To achieve effective transfer of knowledge from the system to a user during consultation,

an interface needs to be present. The user interface is the component that allows for com-

munication between the user and the system [24]. This makes use of a natural language

interface to simulate causal conversation [38]. It enables the input of facts about a given

situation that the engine can use together with information stored in the knowledge base

to arrive at conclusions. Furthermore, the interface allows the user to query the system for

any information the user needs, like why a specific question has been asked. It is crucial

that the interface is simple and easy to use. This stems from the assumption that expert

systems are used by non-technical users who may not have an in-depth understanding of

the inner workings of the system. It is for this reason that the interface should resemble

a human as far as possible to guarantee effectiveness and ease of communication. Duda

et al. [13] refers to this as a characteristic of effective consultants, that is, the ability to

maintain a model of the user and effectively assess what the user does, does not know,

and what he or she is trying to achieve.

Knowledge Acquisition

The knowledge contained in the knowledge base is acquired from human experts. The

process of acquiring knowledge and transfer thereof into the knowledge base is commonly

referred to as the knowledge acquisition process [12]. Most expert systems have a knowl-

edge acquisition component that facilitates the transfer of knowledge from human experts

to the expert system. This is achieved through the presentation of an interface that makes

possible a dialogue between the system and the expert [24]. The knowledge acquisition

interface is sometimes the user interface a non-expert user would use to query and supply

information to the system during consultation, however, specific to the task of knowledge

acquisition.

Alternative ways of knowledge acquisition include interviewing domain experts. The

knowledge is collected and then translated into appropriate symbolic representations by a

knowledge engineer. This was the common approach in the early days in expert systems

development. However, research and development of new technologies has introduced

2.2. KNOWLEDGE REPRESENTATION 17

tools and techniques that aid the automation of the knowledge acquisition process. Such

tools are discussed in subsequent sections.

Explanation Facility

Besides the three basic elements discussed above, more sophisticated implementations

include additional elements to improve the intended functionality of an expert system.

One of these elements is the explanation facility, which most expert systems have [24; 8].

This enables the user to query the system on certain information. Examples include

explanations on why certain information is needed, and how a particular conclusion was

reached. An expert system should then be able to explain the reasoning behind its analysis

and conclusion. This further enables the user to monitor the system as it processes rules

[24]. Special commands are defined that cause the system to invoke this explanation

functionality. In most expert systems, during consultation as the user supplies information

to the expert system, it is possible to request an explanation on why a given question is

being asked. The expected response to this is a display of where and how the piece of

information is used. In most cases, this is an argument required for a given rule to be fired.

An explanation of how a conclusion was reached is often required. The response takes the

form of a chain of rules the system has applied to arrive at the reached conclusion. The

necessity and importance of the ability of a system to explain its processes justifies the

need for multiple levels of representation [8]. Such behavior further highlights the success

of expert systems in mimicking human behavior in decision making; human experts are

often required to provide explanations of their reasoning.

2.2 Knowledge Representation

Knowledge representation [8], considered by many be to the key issue at this point in the

development of AI [33] is the area of AI that involves the transformation and translation

of facts and information about a given subject into a structured symbolic form that al-

lows manipulation in an automated way by reasoning programs. These facts are stored

as knowledge in the system’s knowledge base. The representation process is concerned

with the encoding of the acquired knowledge into the knowledge base. For this reason

it is a critical process in expert systems development. Research has focused on trying

to find ways to represent knowledge that require less effort but maximize the system’s

performance. The representation of knowledge in notable systems was reported to be a

2.2. KNOWLEDGE REPRESENTATION 18

major contributing factor to a large proportion of reported errors [13]. An effective rep-

resentation has to address certain issues. Duda et al. [13] demonstrates that a knowledge

representation formalism should effectively represent the concepts and intentions of the

expert, and allow correct interpretation by reasoning programs. Furthermore, it should

support explanations that reflect human reasoning and be capable of identifying gaps in

the knowledge as well as allow the separation of domain knowledge from the interpretation

program to allow independent alteration of either. Such demands introduce difficulties

in the process of knowledge representation, which if addressed would make way for im-

provements in the development of expert systems. Among these are issues on knowledge

acquisition and the ensuing representation of the acquired knowledge.

2.2.1 Knowledge Acquisition

Knowledge acquisition is concerned with the transfer of knowledge from the expert into

an intermediate store that can subsequently be translated into a formalized representa-

tion. Acquisition usually takes places in one of two ways: manually through interactions

between an expert and a knowledge engineer, or automatically through the use of ap-

propriate automated systems. Several methods are used to acquire knowledge from an

expert. These include interviews, questionnaires, surveys and web-based systems that

present an interface allowing experts to input knowledge into the system. However, the

most common method of acquisition involves communication between a knowledge en-

gineer and human experts. The knowledge engineer’s responsibility is to program the

knowledge into the expert system. This requires use of different knowledge representation

schemes that present an executable representation to the inference engine or interpreter

for execution.

Knowledge acquisition in its own right is time consuming and consequently poses costs

during development of expert systems. Automating the knowledge acquisition process

is a commonly proposed solution [15]. Automated knowledge acquisition tools have seen

widespread use in recent years, with most of these under continuous refinement. These are

discussed in a later section. Automated acquisition tools encourage interaction between

experts and the system. Use of these requires that the experts receive training on how to

use the system. Automated knowledge acquisition tools enable the knowledge engineer

and domain experts to build and maintain the resulting knowledge systems [36]. Notable

features used in the classification of such tools include the degree of automation, the

dependency of the domain, problem type and user type.

2.2. KNOWLEDGE REPRESENTATION 19

Problems with knowledge acquisition have contributed significantly to the deterred im-

provement of expert systems over the years. Duda et al. [13] notes the incompleteness

of the knowledge bases of the MYCIN and PROSPECTOR systems as stemming from

problems in knowledge acquisition. Often the construction of knowledge bases, involving

the identification and encoding of knowledge, reveals gaps and weakness in both the un-

derstanding of the problem domain and the representation techniques [13]. Rafea et al.

[36] emphasizes the importance of a well functioning knowledge acquisition tool in expert

systems development endeavors. Often, consultation performance is limited as a result

of failure to acquire and encode relevant knowledge, which warrants diligence during the

construction of these tools. Ford et al. [15] maintain that the knowledge acquisition

process extends for the life cycle of the system. It is stated that at any given instance,

an acquisition tool should support directly both the domain expert and the knowledge

engineer. With this, Ford et al. [15] note the different facets of the knowledge acquisition

process, which encompasses the elicitation and modeling of human expertise, testing of

the systems efficacy, refinement of the knowledge base, maintenance of the resulting sys-

tem, and elaboration of an explanation capability. These facets highlight the importance

of the knowledge acquisition process in the development of consultants.

2.2.2 Knowledge Representation Schemes

During development, a knowledge engineer must choose the format to be used in repre-

senting the knowledge. A number of different formats are available with different struc-

tures and characteristics and as result fare differently in representing different kinds of

knowledge.

Semantic Networks

A semantic network [24] is a model of associative memory, a graphical knowledge represen-

tation method that uses patterns of interconnected nodes and arcs. The nodes effectively

represent objects, with the arcs representing the relationships between the objects. The

idea behind semantic networks is that knowledge can be stored in the form of a graph.

Semantic networks are widely used as a knowledge representation technique owing to

their robustness and guarantee of efficiency in searching and manipulation of the data

structure. The relationship with other connecting objects or nodes gives meaning to an

object, and hence allows for activation of an object on a given node. A simple semantic

network in the LISP [26] language could be defined as:

2.2. KNOWLEDGE REPRESENTATION 20

(defun *database* ()(

(human (has-a house) (color white) (size big))

(house (has-a kitchen))

(kitchen (is-a room)(has-part stove))

)

)

In the example above, humans, house and kitchen are objects. The arcs are represented

by the association functions: have-a, is-a, and has-part. The attributes of the house

object in this case are color and size. New nodes and arcs can be added to a network at

any time during the development process. These data structures have been widely used

in a variety of ways. Tanwar et al. [41] demonstrates that there are six common kinds of

networks used in various applications, namely, definitional networks, assertional networks,

implicational networks, executable networks, learning networks and hybrid networks.

Definitional networks represent relations between a concept type and a newly defined

subtype, like the relation: an apple is-a fruit. These are known to support the rule of

inheritance. Assertional networks are used for the assertion of propositions, like, if a man

owns a car, then he drives it. Implicational networks are commonly used to represent

patterns of beliefs, causality, or inferences. They use implication as the relation to con-

nect nodes. An example would be: if the grass is wet, then it is slippery. Executable

networks present mechanisms to perform inferences and or search for patterns and asso-

ciations. Mechanism include attached procedures, graph transformations, and message

passing. Yet another example is learning networks. These use acquired knowledge to

build their representations. Knowledge is acquired from examples. When new knowledge

is introduced, extension or deletion of the old contained knowledge takes place. Hybrid

networks are made up of a combination of any of the networks discussed above, either in

a single network or in separate networks [40].

The presence of links between objects in semantic networks, synonymous to mental links

humans form between real world objects, presents semantic networks as a representation

that closely resembles human knowledge structuring. Meaning is derived from the pres-

ence of and connection to other objects. Semantic networks are favored for their ability

to facilitate the inheritance of data that prevents duplication of data, as well as their

ability to allow efficient manipulation. Argued to be the most useful form of inference,

2.2. KNOWLEDGE REPRESENTATION 21

inheritance allows elements of a class to inherit characteristics and behavior from a class

higher in the hierarchy. Multiple inheritance introduces additional benefits, that is, ob-

jects can belong to more than one class, and in turn, a class can be a subset of more than

one class. Additionally, semantic networks fare well in representing knowledge involving

related terms, and in conveying meaning in a transparent manner. Their simple and

easily understood structure makes it easy to translate them into a formalized symbolic

representation that can be executed by programs.

Frames

A frame [8] is an AI data structure used for the representation of data. Two types of

frames exist: individual frames, used for the representation of single objects, and generic

frames, for the representation of classes of objects [8]. Each individual frame represents

an object or situation and consists of a group of attributes that describe an object or

situation. A frame consists of slots in which the attributes are stored. These attributes

contain values and procedures that act on the values. Illustrated below is the schematic

representation of a frame.

(Frame-name

<slot-name1 attribute1>

<slot-name2 attirbute2>

..)

The attribute values can be numbers, strings, or identifiers of other frames. Frames can

be linked together, which is called inheritance. Upon retrieving a frame, an agent changes

some of the information in the frame. This information can be declarative or procedural.

A declarative representation, representing objects, facts and relations asserts the validity

of an attribute whereas a procedural representation, representing the actions performed by

objects, contains instructions to be executed in a given slot. With this, the frame provides

information storage and instruction on how to act in a given situation. Information types

stored in frames include: relationships between the frame and other frames, information

for choosing frames, blank slots and procedures to be executed after various slots have

been filled. Frames are favored for their structure, which allows them to be programmed

and manipulated using object-oriented programming tools.

2.2. KNOWLEDGE REPRESENTATION 22

Frames, like semantic networks have the advantage of allowing reuse of related information

through inheritance, thus eliminating the need to develop repetitive blocks of knowledge

data. Frames fare well in representing knowledge that can be stored in chunks [24].

First-order logic

First-order logic [24], also known as first-order predicate calculus, propositional calculus,

and predicate logic, is a method used for capturing declarative knowledge.

In first-order logic, a sentence is made up of two parts, a subject and a predicate. A

predicate, which defines the properties of the subject can only refer to a single subject.

Sentences take the form P(x), where P is the predicate and x is the subject, represented

as a variable [37]. Manipulation takes places on logically combined complete sentences

according to the same rules as those used in Boolean algebra. Universal (e.g. for all) and

existential (e.g. for some) quantifiers are used to structure sentences. For example, given

a variable x and predicates A and B, first-order logic allows the construction of sentences

like:

∀x: Ax Bx

The above translates to: ”For all x, if x is A , then x is B. The level of ease with which

sentences can be constructed using such syntax has resulted in AI researchers taking

interest in first-order logic as a means of representing knowledge. Subsequently, computer

programs have been developed using first-order logic [37].

First-order logic is favored for its declarative nature which allows facts to be represented

within the syntax. Furthermore, it allows operations on information unlike most data

structures. Examples of operations include dis-junction and negation. It further allows for

the assignment of context-independent meaning, unlike natural languages where meaning

is context-dependent. However, first order logic falls short in that it has limited expressive

power [5]. A famous argument in logic can be used to illustrate this.

All A are B.

All B are C.

Therefore, all A are C.

It is argued that no good way exists to express the above using propositional calculus [34].

2.2. KNOWLEDGE REPRESENTATION 23

Rules

Rules or production rules [24] are perhaps the most prominent method for representing

knowledge. Systems that employ rules for representation are commonly referred to as

rule-based systems or production systems. Production systems maintain an ongoing store

of assertions in working memory [8]. A production rule is made up of condition-action or

antecedent-consequent pairs. A given pair represents an IF-THEN structure that links

supplied information in the IF part to an action in the THEN part. The simple structure

and syntax of rules makes them human readable and easy to implement. A rule in its own

right provides some description of how to solve a given problem. It is possible to extend the

antecedent part of a rule by adding more of these. This is achieved by adding keywords like

AND for conjunction and OR for disjunction, or a combinations of these. An antecedent

contains an object linked to a value by an operator. Mathematical operations are often

used with rules on objects and values that permit mathematical manipulations. Examples

include comparisons, additions, logical operations and boolean operations. Rules can be

used to represent relations, recommendations, directives, strategies and heuristics. De-

pending on the amount of knowledge to be represented, rule structures range from simple

antecedent-consequent pairs to a large complex set of complicated rules. An example of

a rule is given below.

if<antecedent> then <consequent>

IF day_of_week = ’Sunday’

THEN lectures = False

The given example shows how a rule can be used to represent relations. According to this

specification, whenever the day of the week is Sunday, lectures should be set to false, which

would simply imply no lecture attendance, as is the case in most academic institutions. In

this case, day of week is a variable whose value would have been supplied by a user. The

system uses the value to determine whether there should be lecture attendance. During

interpretation, the rule set is searched for a rule whose condition is satisfied. When found,

the action is invoked. Although simple, this example highlights the basic procedure of

rule interpretation by a rule-based system. More complex rules are common in large

systems. For example, the MYCIN system had a rule-based knowledge base consisting

of five hundred rules [39]. This can be argued to be a reasonable amount considering

2.2. KNOWLEDGE REPRESENTATION 24

MYCIN’s performance during consultation.

Uncertainties can be expressed in rules by attaching certainty factors to the antecedent,

consequent, or both [24]. Implementations often make use of custom methods to handle

uncertain knowledge. These methods mostly include assigning a level of confidence to a

given rule. This requires customization of the knowledge base to allow expression of the

confidence of the expert system.

Hybrids

A common approach to knowledge representation is the use of more than one knowl-

edge representation scheme. The systems are customized to leverage the functionality

and benefits of two or more representations formats. This has been known to introduce

improvements in knowledge representation and in most cases, inference. Tanwar et al.

[41] highlights the strength of a hybrid knowledge representation technique. A technique

is described, which uses semantic networks and scripts to represent knowledge. In this

experiment, scripts complement the representation of non-event based knowledge by fill-

ing the gaps resulting from incomplete or disjoint observations. Despite improvements

introduced by hybrid representation techniques, the use of two representation techniques

introduces complexities. For this reason, it is encouraged to adopt a hybrid approach

with extreme caution and complete understanding of the intended functionality.

Comparison of schemes

Niwa et al. [33] presents a comparison of four knowledge representation schemes: sim-

ple production systems, structured production systems, frame systems and logic systems,

based on the difficulty of the implementation and runtime efficiency. The applications

domain used was the risk management of large construction projects. Implementations

of the representations would be tested on four systems developed using a modified ver-

sion of the LISP programming language. Common components of all the systems were

an inference engine, and a knowledge maintenance function to facilitate alteration of the

knowledge base. The systems were capable of both forward and backward chaining rea-

soning. Forward chaining was used to inform the user of consequent risks that could follow

2.3. EXAMPLES OF EXPERT SYSTEMS 25

specific causes, whereas upon input of a risk hypothesis by the user backward chaining

was used to query the user about conditions until the hypothesis, in this case the risk,

was proven. After testing, findings revealed that the level of difficulty of implementing

a knowledge base was directly proportional to the degree of structuredness. However,

runtime efficiency was found to increase with increased structuredness. Structuredness

was also found to decrease sensitivity to the size of the knowledge base [33]. Findings

further revealed that inference was slow with logic systems used as representations. This

lead to the conclusion that logic systems, compared to the other representations are less

efficient and difficult to implement owing to mathematical completeness. Use of modular

knowledge, that is, simple production systems and logic systems, is encouraged in poorly

understood domains with poorly structured knowledge, although this has the cost of low

runtime efficiency. Structured knowledge representations guarantee maximum runtime

efficiency at the cost of difficulties during implementation.

Summary

The process of knowledge representation has proven to be the bottleneck of expert sys-

tems development[12; 25]. Iancu et al. [19] argues that the problem in knowledge problem

is the introduction of information in systems that permits easy access and usability in

solving problems. Duda et al [13] predicts significant advances in the capabilities of ex-

pert systems when the unsolved problems in areas such as knowledge representation and

learning are solved. Efforts have been directed toward establishing alternative ways of

acquiring and representing knowledge using the least resources yet still guaranteeing effec-

tiveness [12]. This has lead to the emergence of knowledge acquisition and representation

tools. Achieved functionality includes automation to varying degrees, of the sub-processes

involved.

2.3 Examples of Expert Systems

As discussed, the main purpose of an expert system is to transfer human expertise within

a specific domain to users who may not have such knowledge. This can be done in a

number of ways. Notable examples are: rule based expert systems which use knowledge

bases containing expert knowledge in the form of IF-THEN rules; case based reasoning

systems, which aim to solve new problems by reusing already established solutions used to

2.3. EXAMPLES OF EXPERT SYSTEMS 26

solved previous problems; fuzzy expert systems, which aim to model uncertainty through

the use of fuzzy membership functions and rules to reason about data; and neural network

systems, which solve problems by simulating the biological structure of the human brain

and nervous system [3]. Among the the first truly successful forms of AI software [43] and

despite their limited knowledge and versatility, expert systems have achieved remarkable

levels of performance in designated domains [13]. The expert systems domain has a wide

area of application [19]. In an attempt to highlight the successes in various domains, a

description of various expert systems, their domains, and characteristics are given below.

The MYCIN System

MYCIN [39] is an expert system developed at Stanford in 1972 for the purpose of treating

blood infections. Reported to have operated at the same level of competence as specialists

in blood infections, it was capable of identifying the bacteria causing infections, proceeding

to recommend antibiotics and prescribing a dosage taking into account the patient’s body

weight. It used reported symptoms and medical results in an attempt to diagnose patients.

MYCIN could request further information on a patient and was capable of suggesting

additional tests in an attempt to arrive at a diagnosis. It could, at request, explain the

reasoning behind a specific diagnosis. It gathered information from the user by asking a

series of questions. At the end, it would give a list of possible answers, i.e., its guess on

the bacteria causing the infection, together with the certainty factor associated with each

diagnosis. MYCIN used a goal-oriented strategy to reason from an initial goal. With a

fairly simple inference engine, the system’s success was due to its effective use of certainty

factors together with the implementation of a sophisticated knowledge representation and

reasoning scheme, which influenced the development of subsequent rule-based systems

following MYCIN’s introduction of the approach [39]. MYCIN was never used in practice

for ethical reasons, not including poor performance.

The R1 System

R1 [27], also known as XCON is a rule-based expert system for configuring VAX-11 com-

puter systems. Developed at Carnegie Mellon and DEC in the late 70’s, it has the ability

to display diagrams showing relationships between the components of a computer system.

It has been used by the Digital Equipment Corporation’s manufacturing organization

since January 1980. R1 is said to have sufficient knowledge of the configuration domain

2.3. EXAMPLES OF EXPERT SYSTEMS 27

thus it requires little search in order to configure a computer system. Reported errors

were due to lack of information on new products [13]. R1 at the time of publication was in

routine use. The acceptance of R1 in practice highlights the usefulness of expert systems

technology.

PROSPECTOR

PROSPECTOR’s [13] main purpose was the evaluation of the mineral potential of a

geological region. It was used by geologists working in mineral exploration. Tasks included

ore deposit identification and drilling site selection. In tests, PROSPECTOR was reported

to have repeatedly produced results closely agreeing with those of geologist consultants

[13]. PROSPECTOR’s knowledge base contains models of different types of ore deposits.

The success of the system in its domain justified efforts to extend the system’s knowledge

base.

DRILLING ADVISOR

DRILLING ADVISOR [23] was a rule-based system designed to diagnose oil drilling prob-

lems. It offered assistance to oil-well drillers on possible causes of problems encountered

as well as solutions. It used backward chaining with certainty for inference, and frames

as a knowledge representation scheme.

COMIX

COMIX [1], developed at Central Laboratories in New Zealand, is an expert system

designed to give advice on the design of concrete mixes. COMIX is used in engineering

and consulting disciplines, as well as by concrete technologists. Using the water over

cement ratio, the system is able to calculate the amount of cement, course aggregate

and sand required. Using mix designs based on the New Zealand code specification for

concrete construction, the system refers the type of structure to the consistency and

placement method [1; 21]. The system houses a rule and frame based knowledge base,

with a resident authority as the information source. Development is on-going aimed at

the extension of the knowledge base to include revisions of cement types and the strength

factors thereof.

2.3. EXAMPLES OF EXPERT SYSTEMS 28

BETVAL

BETVAL [21], another expert system in the construction industry, is a rule-based system

designed to give advice on the selection of ready-mix concrete at a job site. It facilitates

the selection of the type of concrete ordered from a ready-mix concrete plant. BETVAL

was developed by the Technical Research Center using Insight2+ [2] and an IBM PC/XT

or AT computer. BETVAL is seen as a demonstration prototype, primarily used as a

learning tool. It was noted at the time of publication that an extension of BETVALs

knowledge would have to take place in order for BETVAL to be used as a production

system [21].

Sports Injury Clinic

Sports Injury Clinic [45] is a web-based system that helps a user diagnose sports injuries.

It presents a graphical user interface displaying different human body parts, and allows

the user to point to problematic areas using the mouse cursor. The system gathers infor-

mation from the user in an attempt to arrive at a conclusion. Like many other systems,

Sport Injury Clinic offers a vast array of injuries, treatments and recommendations. The

systems is limited in the sense that only muscular skeletal sports injuries are catered for.

Besides this, the functionality and effectiveness of the system has lead to reviews of ap-

praisal and great acceptance by experts in the medical field.

Expert System for Diagnosis of Pests and Diseases In Fruit Plants

Dewanto et al. [11] discusses the development of an expert system to diagnosis pests and

diseases in fruit plants. The intended use of the system is to help users easily identify

the type of disease in fruit plants. The design features primary components of an expert

system, that is, a knowledge base, an inference engine, and user interface. The system

employs backward chaining and utilizes a rule-based knowledge base to arrive at conclu-

sions. Corvid Exsys [14] software, developed by Exsys company 1 was used to develop the

system. The Exsys software tool features a rule editor with a visual interface of decision

trees and an inference engine. It is possible to run applications developed using the Exsys

1http://www.exsys.com/

2.4. ATTEMPTS AT KNOWLEDGE BASE AUTOMATION 29

software tool online. To handle uncertainty, a formula is used to calculate confidence val-

ues in the system. During consultation, the traditional approach of interactively asking

the user for values to be used in the rules is used. The user selects relevant answers to

questions posed, based on observed symptoms. The system uses the answers provided

together with information stored in the knowledge base to arrive at a diagnosis. Experi-

ments showed that the output provided by the system is in accordance with the knowledge

obtained from knowledge sources, hence proving the credibility of the developed expert

system.

Summary

The discussion of systems above confirms the usefulness and relevance of expert systems

in society. Expert systems in general have notable limits. These include the inability

to reason based on intuition and common sense as an expert would. Furthermore, they

have limited knowledge and inherently make it difficult to integrate knowledge from other

domains. Often, the learning process of an expert system is not automated and thus

requires intervention which is not always possible [19]. It is argued that providing tools

that exploit new ways to represent knowledge for use in solving problems, and not the

duplication of human behavior in all aspects, is the goal of expert systems research [13].

A vast array of systems exist that perform exceptionally well in their domains. Although

problems exist that are believed to be holding back the improvement of such programs,

research continues in an attempt to address these issues.

2.4 Attempts at Knowledge Base Automation

In an attempt to address problems in knowledge acquisition, research and development

efforts have been directed at creating tools to enable the automated construction of knowl-

edge bases.

EXPERT SYSTEM CREATOR

Expert System Creator [35] is one of the tools available for the development of expert

systems. It is a portable development and integration environment for knowledge man-

agement, expert systems construction and validation, and database integration. Over

2.4. ATTEMPTS AT KNOWLEDGE BASE AUTOMATION 30

and above the tasks mentioned, Expert System Creator makes it possible to integrate the

system with external projects. Representation of domain knowledge is achieved through

the use of production rules, decision tables or classification trees. The Java program-

ming language [4] is used to implement the tool. Expert System Creator uses CLIPS

and JESS expert system shells for the reasoning process, and generates C/C++ and Java

code for the decision tables and trees [35]. The use of such established tools contributes

to the reliability of the output as well as the familiarity of the system to users. Pop et

al.[35] note that the current status warrants further development, with respect to the

representation, and support for automatic project documentation generation. Through

the use of advanced widgets to support the knowledge acquisition phase and integration

of fuzzy logic engines, enhancements in Expert System Creator are expected to address

the current problems in knowledge representation. It is also noted that the integration of

intelligent reporting tools will improve the performance of Expert System Creator. There

is an apparent focus on integration with existing tools to achieve maximum efficiency.

Although this may introduce complexities, when done correctly, significant improvement

can be achieved. It is important to note the limitations in terms of flexibility and cus-

tomizability that are inherent in robust systems like Expert System Creator. Providing a

wide array of capabilities, Expert System Creator has been the tool of choice for various

development endeavors [35], confirming its inherent strengths.

PROTEGE-2000

PROTEGE-2000, a knowledge management tool from Standford Medical Informatics [35],

facilitates the construction of a domain ontology. In addition it customizes electronic

knowledge acquisition forms used by experts and knowledge engineers during the knowl-

edge acquisition process. Additionally, it encodes the knowledge into a database. How-

ever, in order to leverage the full power of the tool, it is necessary to integrate it with

other existing knowledge acquisition tools.

KRITON

Diederich et al. [12] proposed a hybrid system, called KRITON, for automatic knowledge

acquisition. KRITON [12; 7] combines cognitive science and AI methods to create knowl-

edge bases using different representations. Declarative knowledge is acquired through

2.4. ATTEMPTS AT KNOWLEDGE BASE AUTOMATION 31

automated interview methods whereas protocol analysis is used for the acquisition of pro-

cedural knowledge. KRITON uses the knowledge acquired to construct and present an

intermediate representation language that is subsequently used by frame, rule and con-

straint generators to build up the final executable knowledge base. A hybrid approach

was taken in an attempt to address the knowledge-acquisition bottleneck. Through the

use of hybrid knowledge acquisition tools, KRITON captures different kinds of knowledge

thereby filling the gaps resulting from the limitations of using a single tool for represen-

tation.

KRITON uses three knowledge acquisition methods [12]. From AI, KRITON borrows the

knowledge engineering strategy of interviews. KRITON relies on a dialogue between the

expert and knowledge engineer to acquire declarative knowledge. From cognitive science,

protocol analysis is used to acquire procedural knowledge. This involves the processing of

texts acquired through the transcription of protocols of loud thinking during a problem

solving process [12]. KRITON also makes use of incremental text analysis that enables

acquisition of valuable knowledge from different sources. The acquired knowledge goes

through an intermediate processing phase in which consistency checks and completion

by inference takes place. The output of this phase is an intermediate representation

language consisting of descriptive language for functional and physical objects and a

propositional calculus. The introduction of an intermediate representation has proven to

be an advantage in most implementations [7]. Intermediate output allows for monitoring

and intervention where applicable. To complete the engineering phase, frame, rule and

constraint generators build up the final representation using the intermediate represen-

tation language as input. The knowledge already in the knowledge base is used to guide

subsequent elicitations thus aiding the incremental development and completion of the

knowledge base.

KRITON presents an open, hybrid, and modular approach to the acquisition of declarative

and procedural expert knowledge. An open system in this context provides facilities

to enable extension and elaboration, while modularity guarantees ease of change and

debugging. It is stated that the use of different acquisition tools and information from

different sources makes the system hybrid. Hybrid systems have been noted to introduce

inherent benefits [41]. Such features could arguably be the difference between an effective

representation and an ineffective one. Diederich et al. [12] note however, the shortcomings

of the KRITON system, namely, inaccurate and erroneous working of the protocol and

text analysis. This has been addressed by the reliance on editors to aid employment

and testing of the system. Furthermore, the lack of facilities to enable integration with

other systems is a notable limitation. The emphasis on integration in the Expert System

2.4. ATTEMPTS AT KNOWLEDGE BASE AUTOMATION 32

Creator project [35] presented a flexible and extensible system. In this domain, the ability

to extend a given tool is one that is crucial to the success of a project.

KELVIN

KELVIN [28] is a tool designed for the automated construction of knowledge bases. This

is achieved through the processing of a text corpus and then refinement of a knowledge

base about people, locations, and organizations. Unlike most systems in its domain,

which facilitate the acquisition of knowledge through interviews, KELVIN makes use of

natural language processing software. Knowledge is extracted from various sources with

care. KELVIN uses asserted facts and information obtained from sources other than doc-

uments obtained from web-searches and various online collaboration communities. The

knowledge extraction process includes detection of named entities, relation extraction,

intra-document co-reference resolution and entity disambiguation [28]. KELVIN, as with

KRITON [12], makes use of external tools to aid the construction of knowledge bases.

These include tools to enable document annotations, add-on packages to enable anno-

tations about identified entities, querying tools, as well as tools to enable the smooth

integration with other tools. When tested, KELVIN showed evidence of learning. The

system presented correct facts that it supposedly extracted from the unstructured knowl-

edge source, suggesting a significant and acceptable level of success. The use text analysis

and natural language processing is common in the knowledge engineering domain. Adop-

tion is encouraged in a suitable environment and knowledge domain. Ongoing work on

the KELVIN system as conveyed includes scaling to large corpora, detection of contra-

dictions, expansion of inferences, exploitation of information extraction confidence and

branching out to various genres of text.

Automatic Knowledge Acquisition Tool

Rafea et al. [36] presented a tool for the automatic acquisition of knowledge for irrigation

and fertilization expert systems. The efficacy of the tool was measured based on the tool’s

flexibility, usability, accuracy, and exception handling. The tool’s architecture comprises

four main components: a knowledge elicitation module, a library, a knowledge base gener-

ator, and a verification knowledge base. The knowledge elicitation module is responsible

for the creation, maintenance, and storage of information acquired from experts. Further-

more, it fetches information from the library and combines this with information elicited

2.4. ATTEMPTS AT KNOWLEDGE BASE AUTOMATION 33

from the user to create an intermediate knowledge structure. The library contains control

and domain knowledge about the problem domain. The knowledge structure created by

the elicitation module is used by the knowledge base generator to generate an executable

system. This system is then verified by the verification knowledge base. The function of

the verification knowledge base is to help experts test and verify the knowledge structure.

The modular structure of the system guarantees greater control. It enables the engineer

to separate concerns, allowing focus to be placed on individual modules. Pre-defining

problem solving methods and domain knowledge schema presents the domain experts

with an easier task of filling in the gaps, which is achieved through automated inter-

views. This relieves developers of the burden of manually engineering the knowledge.

Unlike most systems in its domain, which rely solely on elicited information, this system

takes advantage of a separate differently structured base of knowledge. This arguably

introduces improvements in the resulting representation. The presence of a verification

knowledge base helps automate the testing phase, which in different circumstances would

require continuous human intervention. None of the systems discussed above, that is,

Expert Systems Creator, PROTEGE-2000, KRITON, and KELVIN incorporated auto-

mated verification facilities. The final output of the system is an executable knowledge

base system. Rafea et al. [36] reported success of the proposed tool in the structuring of

acquired knowledge by the use of relevant predefined domain knowledge to accelerate the

knowledge base construction process. It is important to note that external effort would

be required to construct and define the domain models, control knowledge, and domain

ontologies contained in the library.

MORE

MORE [22], an intelligent knowledge acquisition tool is another attempt at addressing

problems in knowledge acquisition. Aimed at assisting with the elicitation of knowledge

from domain experts, MORE adds information acquired from experts through interviews

to domain models of qualitative causal relations. The domain models are then used to

generate diagnostic rules. MORE has functionality to elicit further information allowing

the generation of a stronger set of diagnostic rules. MORE, which has seen use in several

domains, presents a dynamic approach to knowledge elicitation and representation, which

guarantees continuous relevancy of the knowledge base. Kahn et al. [22] demonstrate

how MORE is used in parts of the drilling fluids domain. Furthermore, MORE has been

used successfully to build systems to diagnose computer disk faults, network problems

2.4. ATTEMPTS AT KNOWLEDGE BASE AUTOMATION 34

and circuit board manufacturing problems. Successful use of MORE in these domains is

argued to be an indication of the power of the strategies MORE employs [22]. Future

work is directed at using MORE in the development of expert systems in various other

domains. Although MORE is not as robust as some of the systems discussed, it presents

itself as an solution to problems in its domain.

ICONKAT

ICONKAT [15] is an integrated knowledge acquisition system designed to facilitate the de-

sign, construction, testing, maintenance and explanation of knowledge bases. It comprises

three subsystems: the knowledge elicitation subsystem, maintenance subsystem, and the

explanation subsystem. The knowledge elicitation subsystem facilitates the construction

of domain models from an expert’s knowledge. The maintenance subsystem assists en-

gineers and experts with testing the system’s performance, refining the knowledge, and

maintaining the system through the use of appropriate support tools. Concept maps and

repertory grids [15] are utilized to provide various perspectives of the domain knowledge.

The explanation subsystem makes use of constructed domain models as the foundation of

the resulting consultant system’s explanation capability. The use of subsystems enables

the effective management of individual subsystems. Teams can work on different subsys-

tems to improve performance. ICONKAT at the time of publication was in routine use

for the purpose of designing and constructing systems for diagnosing first pass cardiac

functional images [15]. ICONKAT, compared with the systems discussed, has plenty to

offer. The robustness of the tool suggests exceptional performance, however, this is often

at the cost of ease of use and implementation and integration.

ROGET

ROGET [6] is a knowledge-based system designed for the task of acquiring the conceptual

structure of a diagnostic system. Through a dialogue with an expert, ROGET acquires

the expert system’s conceptual structure, which is then presented to developers to aid the

design and development of the expert system. In addition, ROGET recommends system-

building tools as well as identifying the scope of the resulting expert system. Although

there is little emphasis on knowledge acquisition, ROGET presents excellent functionality

in the domain of expert systems development.

2.5. TOOLS AND TECHNIQUES 35

Exsys Corvid Expert System Development Tool

The Exsys Company 2 has a reputation for providing expert system tools. Exsys pro-

vides a semi-automated tool for building and fielding interactive consultation systems

online. With significant focus on ease of use and learning, the Exsys Corvid Expert sys-

tem development tool aims to enable the conversion of domain expert knowledge and

decision-making logic into a structured symbolic form capable of being dynamically exe-

cuted by the Exsys inference engine during consultation. The development of Corvid has

been assisted by organisations and business entities over a significant number of years,

with the ultimate goal of developing a system that would allow fast and easy creation of

simple and or complex systems online. The presence of online tutorials makes it easy for

non-technical users to build systems over short periods of time. The Corvid system en-

ables the development of expert systems by facilitating the capturing of decision-making

logic of a domain expert, the generation of a suitable user interface based on the knowl-

edge gathered, and finally, the integration of the system with other available IT resources.

The uptake of Exsys services by users in various domains reflects potential credibility and

reliability.

The aim of the discussion in this section was to highlight advances in the effort of ex-

ploiting new ways to effectively represent knowledge that can be used to solve problems.

As noted, some of the systems excel under certain circumstances and fall short in others.

This necessitates further research and development of such tools.

2.5 Tools and Techniques

It has been argued that the success in consultation of an expert system is highly de-

pendent on the representation and organization of knowledge in the knowledge base [15].

Consequently, it is believed that the presence of a variety of tools and techniques to aid

the knowledge representation process would result in the development of highly sophis-

ticated systems that are capable of unprecedented levels of inference. It is not hard to

argue for the necessity of research and development of such tools and techniques. These

tools directly and indirectly aid the development of systems to enable effective knowledge

acquisition and representation.

2http://www.exsys.com/

2.5. TOOLS AND TECHNIQUES 36

2.5.1 Client Interface

As discussed, the approach to knowledge elicitation has recently been the use of elicitation

environments or systems. These present an interface that allows for a dialogue between

a domain expert and a system. These allow the acquisition tools to facilitate automated

interviews in an attempt to gather domain knowledge and the expert’s expertise. A

common characteristic of these systems is that they are web-based, which guarantees

accessibility and mobility. Several tools exist that can be used in the development of

interfaces that allowing for data input.

HTML

HTML (Hyper Text Markup Language) [18] is a markup language used for the creation of

websites. An HTML document consists of HTML elements. A collection of these and plain

text are used to describe the structure, content and semantics of a web document. HTML

documents are read by a web browser, which composes them into visible structured web

pages. It is possible to embed objects into web pages using HTML. Objects can include

images, video, audio and other documents. Below is an example of an HTML document.

<!DOCTYPE html>

<html>

<head>

<title>I am a title</title>

</head>

<body>

<p>Hello world!</p>

</body>

</html>

The tags have special meaning attached to them, which is understood by web browsers.

For example, the ¡!DOCTYPE html¿ tag denotes the document type to allow correct

display of the web page.

As an open format, HTML is available for use without the need to acquire licenses. With

HTML5 as the most recent version, HTML is supported by every web browser, conse-

quently, it is used in the development of most applications, including mobile, desktop and

2.5. TOOLS AND TECHNIQUES 37

web applications. Additional benefits include its simplicity, ease of use and maintenance,

and availability at no cost. One of the notable benefits is its ability to allow embedding of

scripts to extend a websites functionality. HTML as a markup language presents itself as

an excellent solution for creating web interfaces that can be adapted into a client interface

for a knowledge acquisition tool.

JavaScript

JavaScript [32] is a programming language developed jointly by Netscape Communications

Corporation and Mozilla Foundation. It is argued to be the most popular programming

language, with JavaScript interpreters believed to be installed on every computing device

capable of browsing the web. Its primary use is the creation of interactive effects in web

browsers. It introduces interactivity within web pages and aids the development of web

applications. JavaScript code is often embedded within HTML documents to extend the

functionality thereof.

JavaScript code is interpreted, thus making it faster than traditionally compiled pro-

gramming languages. However, modern implementations may be compiled in situations

where a browser feels this will result in better performance. Like HTML, JavaScript is

widely supported with most browsers capable of running JavaScript code. JavaScript is

introduced in an HTML document using a special tag. An example is shown below.

<script type="text/javascript">

//JavaScript code

document.write("Hello World!")

</script>

<script src="/path-to-file/.js" name="name"></script>

The first example executes the JavaScript code enclosed between the script tags. In this

case, a simple ’hello world’ text is displayed on a web page. The second example imports a

script from a defined location. The result will therefore be whatever the code in the input

file does. Often invoked upon the click of a button or submission of a form, JavaScript

2.5. TOOLS AND TECHNIQUES 38

code enables the creation and manipulation of objects. For interactivity, JavaScript is

arguably the best development tool available.

ASP.NET

ASP.NET [29] is a server side development framework developed by Microsoft for the

creation of web sites, web applications and web services. Development models supported

include web pages, model view controller, and web forms. It allows developers to create

dynamic websites using a virtual interface.

Unlike notable alternatives, ASP.NET offers increased performance resulting from com-

piled code. Furthermore, it supports standard programming languages, hence eliminating

the need to learn a new programming language. One other notable benefit of ASP.NET

is its .NET framework foundation. This introduces .NET development tools that can

be used to create Windows desktop applications as well as web applications. Developers

can make use of the Visual Studio .NET tool. ASP.NET is widely used and favored as a

framework for the development of web based interfaces. In addition, full technical support

and in most cases, reliability is guaranteed, which may not be the case with open source

alternatives.

A notable downside is the reliance of ASP.NET websites on ASP.NET compatible servers,

that is, servers that support ASP.NET applications. At this point in time, ASP.NET is

a viable and extremely capable tool for the development of interactive web interfaces.

Windows Forms

Windows Forms [31] is a smart client technology in the format of a graphical application

programming interface (API) for the .NET Framework. It provides a platform for the

development of robust applications with rich user interface elements by providing a set

of managed libraries that simplify common applications. A form is a visual surface on

which information is displayed to the user. These are created in a development environ-

ment like Visual Studio 3 by dragging and dropping user interface elements in a Windows

Forms Designer. Forms can be used to request input from users, and communicate with

remote computers over a network. Windows Forms applications are referred to as event-

driven application. Actions are generated when the user interacts with the form, which

3http://msdn.microsoft.com/en-us/vstudio/aa718325.aspx

2.5. TOOLS AND TECHNIQUES 39

are then processed through the execution of supplied code. This code, often referred to

as code-behind, can be written in any of the languages supported by the .NET frame-

work. Windows Forms has the benefit of allowing the creation of robust applications

with relative ease. Most of the code is managed allowing the developer to focus solely

on the domain logic. However, as a Microsoft technology, Windows Forms applications

function best on machines running Microsofts Windows operating system. This is seen by

many as limitation and for this reason, attempts have been made to allow Windows form

applications to run on non-Windows systems. As with ASP.NET, Windows Forms offers

increased performance from compiled code. Furthermore, the underlying .NET framework

introduces tools that can be used in conjunction with Windows Forms to create robust

Windows applications.

2.5.2 Intermediate Representation

The benefits of an intermediate representation were highlighted in an earlier section.

These include the ability to allow monitoring and management of the resulting represen-

tation. Several document formats exist that could allow the representation of somewhat

intermediate data.

XML

XML [44] (eXtensible Markup Language) is a markup language designed for the store and

transportation of data. Like HTML, XML is widely used in various domains and is favored

for its simplicity, openness and extensibility. The structure of an XML representation is

similar to that of HTML. As with HTML, it is possible to embed existing data within

an XML representation. Markup languages present inherent benefits that render them

excellent tools for storing data.

Comma Separated Values (CSV)

CSV, for Comma Separated Values, is a file format commonly used for the storage of

delimited data in plain text format. Data elements are separated by comma characters

with records terminated by newline characters. Although they are not used as much as

notable alternatives, CSV files are used to exchange data between applications in various

domains. Their structure permits the store of data representing sets or records. With

2.5. TOOLS AND TECHNIQUES 40

little effort, CSV can be used to effectively represent a variety of structured data sets.

For this reason, it is an option worth considering.

Plain text

This refers to textual data in ASCII format which is said by most to be the most portable

format due to availability of machine independent applications that support it. Characters

supported include numbers and symbols. The format is limited and as a result does not

support any type of formatting. Plain text file sizes are usually small with documents

taking up less than half the size of rich text documents containing the same number of

characters. The simple structure plain text enables files to be easily processed by different

applications owing to their immunity to computer architecture incompatibilities. A file is

generally considered plain text if it maintains a human-readable forms. For this reason,

files containing markup or meta data are considered plain text. Ultimately, plain text

files are excellent for storing data likely to be processed by different applications.

2.5.3 Translation

To transform acquired knowledge into an executable representation, some sort of trans-

lation has to take place. This translation process takes as input an intermediate repre-

sentation and produces as output a final executable knowledge base system to be used by

reasoning programs. This warrants the creation of such a translator.

Java

The Java programming language [4] is an object-oriented programming language designed

by Sun Microsystems. Java, which is a high-level or imperative programming language

enables the development of computer programs using English based commands. Java

source code is compiled into Java bytecode, which is verified and interpreted for a native

architecture. Java offers great power to developers because of its extensive libraries,

which makes it a first choice for skilled and non-skilled developers developing applications

in various domains. Java is easy to use and extremely reliable. The widespread use of the

language as well as the ubiquity of devices running Java applications is an indication of

this. In addition, Java is secure, concurrent and platform independent. This makes it an

attractive choice in the development of robust applications.

2.5. TOOLS AND TECHNIQUES 41

C#

The C# programming language [30] is one of the programming languages supported by the

.NET framework. Derived from the C programming language, it is a simple and powerful

type-safe object-oriented language that enables the development of secure and robust

applications that run on the .NET Framework. Common applications include Windows

client applications, XML Web services, distributed components, client-server applications

and more. C# is specified as a common language infrastructure (CLI) language. The

language provides features that make developing solutions faster and easier; these include

type-safety, garbage collection, simplified type declarations, versioning and scalability

support, and many more. The language boasts syntax similar to that of C, C++ and Java

programming languages, but by introducing unique features such as delegates and lambda

expressions, it stands out as better a choice. Microsoft has implemented Visual C# from

the C# language, which is commonly used for developing Windows applications using

the Visual studio development environment. As highlighted earlier, the .NET Framework

class library provides inherent including access to many operating system services and

other well-designed classes, which significantly improve the development process. As one

of the languages supported by the .NET framework, C# can be used to implement the

different tiers of a Windows Forms application, that is, the presentation layer, domain

layer, and data layer. Like Java, C# offers great power and flexibility to developers, which

render it an attractive choice of a programming language for the development of robust

applications in various domains, especially those intended to run on Microsofts Windows

operating system.

Other Options

A compiler is a program designed to translate source code expressed in one language into

another language. A compiler generator is a tool that enables the efficient development of

compilers. Compiler generators are available that can be used to create a compiler suitable

for the translation of an intermediate representation into a final executable representation.

The effectiveness of compiler generators and the efficiency with which they achieve their

task makes them attractive tools worth considering. Rule generators are an option to

consider. These facilitate the development of rule based knowledge bases.

2.5. TOOLS AND TECHNIQUES 42

2.5.4 Testing

VP-Expert

Much AI research has focused on improving the already existing technology and finding

better ways to exploit it. As a result, tools have been developed to aid the efficient devel-

opment of expert systems in various domains. A shell, which allows for the building and

maintenance of knowledge based applications [3], is a notable example. VP-Expert [17]

is an expert system shell developed by Paperback Software International. It is a powerful

and easy-to-use tool that has seen use in educational and commercial applications. It

contains everything needed to run an expert system. This includes an inference engine,

a rule editor and a user interface. The inference engine uses specially structured knowl-

edge base files to facilitate consultation. The editor provides a means for creating and

editing the rules in a knowledge base, while the user interface allows for the asking of

questions, presentation of traces and explanations of the flow of execution where needed.

The VP-Expert shell is capable of backward and forward chaining. Furthermore, it ap-

plies the concept of confidence factors. An expert system shell like VP-Expert introduces

efficiencies during the development of expert systems. Use of such a tool rids a devel-

oper of the effort needed to create the main components of the expert system like the:

Inference engine, working memory and user interface. Furthermore, it has proven easier

to build systems in various domains, since the only component required is the problem

domain information. Using an expert system shell in development of expert systems has

proven to significantly eliminate overhead. However, the input of new knowledge across

systems can be inflexible and sometimes complicated. It is important to note that the

sophistication of a shell has a direct influence on the overall performance of the expert

system, that is, an expert system running a shell with a poorly implemented algorithm,

irrespective of the quality and extensibility of the knowledge base, can yield an undesired

inferior result. The VP-Expert software package comes in two genres: a student version or

educational version, and a commercial one. These versions differ in the extent or depth of

functionality they provide with the former providing limited functionality and the latter

featuring fully-fledged features that significantly increase productivity and performance.

An expert system shell like VP-Expert in this case provides sufficient functionality and

capabilities, making it a credible tool for consultation. Considering the two main internal

components of an expert system, that is, the knowledge base, and the inference engine,

there is evidence to suggest that the use of an expert system shell like VP-Expert can

notably improve the development and testing of an expert system [10]. The shell as noted

takes as input a knowledge base file. This can be fed into the system from an external

2.6. SUMMARY 43

source or created within the system itself using built-in templates and procedures for data

management. These files make up the knowledge base used by the inference engine during

consultation. The shell employs built-in routines for reasoning with the rules and facts

supplied in the knowledge base. The system is easy to use and does not require exhaustive

configuration effort to operate. The engineer is effectively left with the job of creating and

structuring the domain knowledge into a knowledge base. The VP-Expert shell has been

designed to accept knowledge base files with knowledge structured as IF-THEN rules.

The structure of a VP-Expert rule is shown below:

RULE rulename

IF antecedent

THEN consequent;

The system requires that every rule has a unique name, an antecedent, and a consequent.

An example of rule is given below:

RULE Diagnosis_of_measles

IF Diagnosis = measles

THEN Treatment = penicillin;

VP-Expert permits the use of variables and values in rules, as shown above. The above

rule states that upon the discovery of measles in a diagnosis, we may conclude that the

treatment is penicillin by assigning variable Treatment the value penicillin.

2.6 Summary

A brief overview of expert systems was presented. This highlighted the applications, ele-

ments and examples of expert systems. The relevance of knowledge representation within

the context of expert systems development was conveyed. Emphasis was on knowledge

acquisition, noted to be the bottleneck of expert systems development, and the various

knowledge representation schemes available. Systems were discussed that aimed to ad-

dress problems observed in the process of knowledge acquisition and representation. Their

strengths, weakness and differences were noted. Finally, tools and techniques that could

aid the development of such systems were explored.

Chapter 3

Knowledge Elicitation

This chapter discusses the design and implementation of the knowledge acquisition tool

(KAT) with emphasis on the preliminary modules. An overview of the application is

given, briefly introducing the different components of the application and steps that take

place in order to get to the final output. Knowledge elicitation is discussed, that is,

how the knowledge is elicited from the domain expert, and how this knowledge is stored.

Next, a critical step in the knowledge base generation process is discussed, this is the

intermediate knowledge generation step. The discussion touches on the tools used to

enable the generation as well as the details on the output of this step.

3.1 Overview

The design of the KAT system, to some degree can be regarded as modular; modules with

clearly defined functions make up the system. These work together in the background to

produce the ultimate output of the KAT system, the knowledge base itself. The research

objective is to present a way to automate the process of knowledge engineering when

developing expert systems. This is achieved through the development of a system that

will enable the automatic construction of executable knowledge bases. This is an attempt

to provide a solution to problems inherent to the knowledge engineering process during the

development of expert systems, which include time constraints and lack of communication

between the parties involved, that is, the domain experts and the knowledge engineer.

The KAT system comprises three components or modules, which together are responsible

for the overall working of the application. These modules enable the execution of the

44

3.1. OVERVIEW 45

critical processes, which in turn, enable the generation of a knowledge base. The processes

are knowledge elicitation, intermediate knowledge generation, knowledge base generation,

and verification. These processes and components are shown in Figure 3.1:

Figure 3.1: Steps, input, and outputs of the modules involved in the knowledge base
generation process

3.2. KNOWLEDGE ELICITATION 46

The application features a user interface to allow the input of domain data and details

about objects in a given domain. The user interface allows for the knowledge elicitation

process to take place. The design of the interface facilitates what information is requested

and therefore stored, and thus allows only relevant data to be entered, which ultimately

results in the generation of an appropriate and relevant knowledge base. The application

additionally features an intermediate knowledge generator, which takes as input the data

entered by the user in the elicitation phase and converts this into a form appropriate

for storage and transfer into external modules or applications. As the name suggests,

this module enables the execution of the intermediate knowledge generation process, the

output of which is an XML-based knowledge representation. The final module is the

knowledge base generator or rule base generator, which is responsible for the generation

of the final executable knowledge base. A VP-Expert expert system shell was used to

carry out the evaluation of the system through the verification and validation of the

constructed knowledge base.

3.2 Knowledge Elicitation

To demonstrate the functionality of the KAT system as a knowledge acquisition tool, the

presence of knowledge is paramount. The problem domain can be argued to be of little

significance as far as the research aim is concerned. The research objective, as noted, is

concerned with the use of modern technologies to enable the automation of the knowledge

engineering process. It was a design and implementation decision to select a problem do-

main that would present the least amount of difficulty in trying to achieve the research

objective. With that said, sophisticated expert systems exist that focus on diagnostics,

whether it is system diagnosis, or clinical diagnostics. For this reason, much research

in recent years has focused on studying the use of diagnosis knowledge bases as well as

extending the knowledge bases of such diagnostic knowledge-based systems, all this with

the hope of achieving greater levels of inference. It is for the reasons mentioned above

that the disease diagnosis problem domain was selected, specifically cattle disease diag-

nosis. The user interface and consequently the rest of the modules were developed with

the problem domain in mind. It can be argued that this presents a limitation, however,

it has sufficed for the demonstration of the intended functionality of the KAT tool.

3.2. KNOWLEDGE ELICITATION 47

3.2.1 Information source

The Cattle site 1 was used as the source of disease knowledge. The website provides

comprehensive information on cattle diseases, which includes: disease names, typical

symptoms, advice on prevention, and treatment information. Upon selection of the disease

of interest on the website’s webpage, information relevant to the disease is displayed. The

KAT system was developed and tested using the knowledge acquired from the Cattle site.

Listed below are items of information about a given disease that can be retrieved from

the Cattle site.

• Disease name- This is the name of the disease, which sometimes includes the

alternative names of the disease as most diseases can be identified using more than

one name.

• Causes -This category details events, conditions or occurances that may result in

an animal contracting the disease.

• Treatment - This category gives information on how an animal can be treated for

the disease.

• Prevention - This explains how the disease can be prevented in the case that an

animal has not yet contracted the disease.

The information provided by the website proved sufficient for the purpose of demonstrat-

ing the functionality of the KAT system.

3.2.2 Data elements of interest

To demonstrate the intended function of the system, a few data elements were required

from the disease information collected from the Cattle site. When used appropriately,

these data elements enable the effective generation of a knowledge base in the form of

production rules, which can be used by an inference engine during consultation. These

data elements are discussed below:

1. Disease name - This is used as the identifier for a given disease and is stored in

the system as a string

1http://www.thecattlesite.com/

3.2. KNOWLEDGE ELICITATION 48

2. Alternative name - As noted, some diseases are identifiable by more than one

name. This field stores the alternative names of a disease, provided one exists, in

string format. If none is provided, it is assumed that the disease has only one name.

The absence of this value does not affect rule generation in any way.

3. Primary symptoms - From the data source, symptoms have been identified that

suggest the presence of a particular disease. These symptoms are grouped for the

purpose of establishing priority. Primary symptoms are those that have to be present

for a conclusion to be drawn, that is , they are the direct result of a pathogen. These

are stored as a list of strings, as a given disease can have multiple primary symptoms.

4. Seconday symptoms - These are symptoms that present themselves in some cases

and as a result are not always present.

5. Treatment - Stored as a sequence of strings, this is the suggested treatment that

can be administered to treat an animal that has contracted the identified disease.

For each disease, the domain expert can use the graphical user interface provided to input

data on the different data elements, and in doing so, populate an internally stored list of

diseases.

3.2.3 Storing of acquired data

The KAT system stores elicited data in an intermediate form prior to subsequent pro-

cessing by the next module. The information is initially stored in a human-readable form

in a plaintext file. The storage of elicited data allows the domain expert to review the

data as it is seen by the KAT system. If any errors or mistakes are identified, the domain

expert is able to re-enter new correct data in the system to ensure that the system has

correct information. The generation of a human-readable intermediate representation is

done for the sole purpose of verifying the correctness of the elicited data. Shown below is

an extract of the contents of the human-readable representation in plaintext.

Name : Anthrax

Othername : Anthrax

Primary symptoms : sudden death ; f e v e r ; d i f f i c u l t breath ing ; d i f f i c u l t y

swal lowing ; swe l l i n g o f throat and neck

Secondary symptoms : muscle tremors ; r ednes s o f mucous membranes ; blood−
s t a ined d i s cha rge from no s t r i l s , mouth and anus

3.2. KNOWLEDGE ELICITATION 49

Treatment : Due to the r ap i d i t y o f the d i s e a s e treatment i s seldom po s s i b l e ;

a lthough high doses o f p e n i c i l l i n have been e f f e c t i v e in the l a t e r

s t ag e s o f some outbreaks .

Listing 3.1: Human-readable representation

The data corresponding to the data elements discussed is temporarily stored for verfication

purposes. The contents of the generated plaintext file can be viewed using a simple text

editor. This file, HUMAN READABLE.TXT, is located in the program directory.

3.2.4 The user interface

The C# programming language was used to create the graphical user interface (GUI). As

a powerful objected-oriented language supported by the .NET frame, C# stood out as a

suitable language to use. The creation of the GUI was achieved by building a Windows

Forms application intended to facilitate the knowledge elicitation process. During the

elicitation process, the user is prompted for items of information that will help the rule

generator to generate rules that can be used effectively by an inference engine to arrive at

accurate diagnoses. Figure 3.2 shows a screenshot of the GUI with test data in the data

fields.

The interface is made up of two sections or control groups: Disease Information, and

Representation. These sections are used to group the different controls on the form and

semantically separate the purpose of the user interface elements.

Disease Information

Several Textfield controls are housed in a Groupbox control to enable the user to

enter disease information. These controls, namely, disease name, other name, primary

symptoms, secondary symptoms, and treatment, accept data in the form of strings. It

is worth noting that the design and inner workings of the KAT system requires that a

semi-colon character (;) is used to separate symptoms in both the Primary symptoms

and Secondary symptoms text fields, as shown in Figure 3.2 above. Failure to do so

will result in an undesired generation output, which can compromise the credibility of the

resulting knowledge base.

3.2. KNOWLEDGE ELICITATION 50

Figure 3.2: Screenshot of the KAT GUI

Representation

This section contains controls that enable the user to control how the application generates

the various representations. The user interface control in this section can only be used after

a disease has been added into the system. This is deliberate to prevent the ”generation”

of an empty knowledge base. The purpose of the different user interface controls are

discussed below:

• Generate Representation(s) controls

Three Checkbox controls allow the user to request the generation of a specific

representation.

3.2. KNOWLEDGE ELICITATION 51

– Human-reable - checking this enables the generation of a human-readable in-

termediate representation.

– Intermediate - checking this enables the generation of an intermediate XML-

based representation.

– Executable - checking this enables the generation of an executable representa-

tion. This is enabled by default.

Checking all three checkboxes consequently results in the generation of all three

representations.

• Executable Representation Scheme controls

Three Radio button controls allow the user to select the specific representation

scheme for the resulting knowledge base.

– Rules - checking this instructs the application to generate a rule-based knowl-

edge base (KB).

– Frames - checking this instructs the application to generate a frame-based KB.

– Network - checking this instructs the application to generate a semantic network-

based KB.

• Overwrite existing files control

The KAT system allows for the incremental extension of the knowledge base. This

can be achieved by appending new information to previously generated represen-

tations. By unchecking the Overwrite existing files checkbox, the user

instructs the application to append the new information to existing representation

files. Checking this control results in the overwriting of existing files.

• Open generated files when complete control

This control allows the user to select whether the generated files should be opened

automatically upon completion of the generation process. When checked, generated

files are opened using the default text editor on the system running the application.

Adding a disease

In order to add information into the KAT system, the user will need to populate the

relevant text fields on the form. To invoke the application to store the entered data,

the user is required to click on the Submit button control located at the bottom right

3.2. KNOWLEDGE ELICITATION 52

corner of the form. When entered data has been successful stored, a dialog window is

displayed confirming that the disease has been added. The user is then prompted to select

whether he or she wishes to generate the knowledge base at that point. Figure 3.3 shows

a screenshot of the dialog displayed when a disease has been successfully added into the

KAT system.

Figure 3.3: Screenshot of dialogue confirming successful disease entry

Selecting the Yes option invokes the generation of an executable knowledge base. It is

important to note that the generation process only considers information that has been

entered into the system up to this point. If the user selects the No option, the user is

taken back to the main window, whereupon new data can be entered.

Input validation

To ensure appropriate use of the user interface, some input validation is incorporated

into the user interface. Discussed below is the input validation that occurs in a common

scenario.

• Absence of critical required information

In the situation where a user attempts to add a disease by invoking the Submit

method, the application checks the data fields to ensure that all critical data has

been provided. If the tool detects that an item of critical information, like the disease

name, is missing, an error message is displayed alerting the user to the omission of

the data. A screenshot of an error message alert is shown in Figure 3.4.

The proposed user interface provides a means of communication between the domain

expert and KAT system. Although limited in functionality and sophistication, the user

interface has been shown to provide adequate functionality to allow for the demonstration

of the tool’s functionality considering the scope of the research problem.

3.3. INTERMEDIATE KNOWLEDGE GENERATION 53

Figure 3.4: Screenshot of error dialogue alerting the user of missing data

3.3 Intermediate Knowledge Generation

The generation and presentation of an intermediate knowledge representation introduces

benefits during the structuring and engineering of knowledge [7]. Similar to the KRITON

system discussed in Chapter 2, the KAT system includes an intermediate knowledge gen-

eration step. The elicited knowledge is transformed into an intermediate representation

that is used as input to the next module. The presence of an intermediate representa-

tion allows for the monitoring of the generation processes as well as the intervention by

knowledge engineers and domain experts if needed.

3.3.1 XML Generetor

The XML generator uses the elicited information as input to generate an intermediate

XML-based representation. This supports the integration of the knowledge elicitation

module with the knowledge base generation module. Additionally, it allows for inter-

system integration to take place.

XML representation

The intermediate knowledge representation, as noted, can be used as an input to an

external module. XML is discussed in the literature survey as being an excellent means

for data storage and transportation. These benefits are exploited in the KAT system.

Using the intermediate knowledge representation, it is possible to integrate the KAT

system with a different system. This is made possible by existence of a vast array of XML

processing tools. The use of XML in this case presents the advantage of producing a

structured intermediate representation of the data that allows for subsequent processing

by disparate modules. The uses of an XML-based representation are expanded below.

3.3. INTERMEDIATE KNOWLEDGE GENERATION 54

• Temporary storage - XML is used to temporarily store data and information waiting

to be processed by disparate systems or modules. When new data becomes available,

this can be appended to the disease list stored in the .XML file. This data is then

processed and used each time the rule generator is invoked.

• Monitoring - The resulting XML file can be analyzed to make sure that the overall

generation process is progressing correctly. Mistakes can be identified and rectified

earlier, thus ensuring that a credible and reliable knowledge base is generated.

XML elements

Data elements that make up a disease object are inserted into XML tags. The naming

of the tags holds semantic relevance. Opening tags used for different data elements are

listed below:

• <diseaseList> - encloses the list of the disease entered in the system.

• <disease> - encloses a disease object.

• <name> - encloses the name of a given disease.

• <othername> - encloses the alternative name of a given disease.

• <symptoms> - encloses the group or list of primary and secondary symptoms of a

disease.

• <primarySymptoms> - encloses the list of primary symptoms belonging to a dis-

ease.

• <psymptom> - encloses a single primary symptom.

• <secondarySymptoms> - encloses the list of secondary symptoms belonging to

a disease.

• <ssymptom> - encloses a single secondary symptom.

• <treatment> - encloses the treatment for the disease.

The tags listed above are carefully arranged to form the resulting XML file. For the

purpose of demonstrating the usefulness of an intermediate representation during the

engineering of knowledge, this short list of tags was found to suffice.

3.3. INTERMEDIATE KNOWLEDGE GENERATION 55

Invocation of the XML generator

The XML generator is invoked in the event that the user chooses to generate a KB in the

form of one of the available representations in the KAT system.

• Input

The generated file, as discussed earlier, contains a single disease list, which in turn

contains a collection of disease objects. This disease list is populated using compiled

disease data elicited from the user. It therefore is a precondition that the list

of disease contains at least one element, that is, at least one disease should be

entered into the system in order for generation to occur. This is a design and

implementation decision to avoid generating an empty disease list. As a result,

the method responsible for generating the intermediate XML-based representation

accepts as input a non-empty list of diseases and a second argument, a variable the

value of which specifies the mode of generation. These are discussed shortly.

• Functional call

Shown below is an extract from the main program thread. This shows when and

how the XML generator is invoked.

i f (checkBox2 . Checked | | ! checkBox2 . Checked) {
// generate r e g a r d l e s s

Inte rmed iate . Generate (d i s e a s e s , mode) ;

I n t e g r a t o r . I n t e g r a t e (”INTERMEDIATE.XML”) ;

generated = true ;

}

Listing 3.2: Invoking the XML-generator

The identifier checkBox2 in this case represents the user interface control that al-

lows the user to choose whether an intermediate generation should be generated. In

the extract above, the XML generator is invoked regardless of the user’s choice. This

is an implementation decision that will be justified in a subsequent chapter. The

function call Intermediate.Generate(diseases, mode) is of great inter-

est in this discussion. This invokes the Generate method in the Intermediate

class, which is responsible for generating the XML-based intermediate knowledge

representation. The method accepts as input two parameters:

– List<Disease> disease - a list of diseases populated with elicited disease

data.

3.3. INTERMEDIATE KNOWLEDGE GENERATION 56

– Boolean mode - a boolean value used to identify the mode of generation.

Two modes exist: overwrite and append. A true value instructs the system

to overwrite the existing .XML file, while a false value instructs the system

to append new information into the existing .XML file.

• Procedure

The pseudo-code for the procedure responsible for generation is listed and explained

in Listing 3.3.

N := LEN(Di s ea s e s)

D i s ea s e In f o := NULL

Output := NULL

FOR i := 1 TO N:

D i s ea s e In f o += ADDTAG(Di s ea s e s [i] . GetName ())

D i s ea s e In f o += ADDTAG(Di s ea s e s [i] . GetOtherName ())

FOR j := 1 TO LEN(Pr imary List) :

D i s ea s e In f o += ADDTAG(Di s ea s e s [i] . GetSymptom [j])

FOR k := 1 TO LEN(Secondary Li s t) :

D i s ea s e In f o += ADDTAG(Di s ea s e s [i] . GetSymptom [k])

D i s ea s e In f o += ADDTAG(Di s ea se s [i] . GetTreatment ())

Output += Di s ea s e In f o

D i s ea s e In f o := NULL

END

WRITE TO FILE(Output)

Listing 3.3: Generation of XML-based representation

To produce an XML-based disease list, the internally stored list of diseases is tra-

versed. For each disease, the various data elements are extracted and enclosed be-

tween appropriate XML tags. Each data element is stored temporarily as a string.

The final output is effectively the result of concatenating the contents of string vari-

ables in which the data elements are stored. An extract taken from the Generate

method showing how a disease name element is stored, is shown below:

St r ing disease name = ”\ t \ t \ t<name>” + d i s e a s e s [i] . GetName () . Trim () +

”</name>\n ” ;

Listing 3.4: Extraction of a disease name

In this case, a list of diseases is traversed, extracting the data element corresponding

to the disease name. The value is enclosed between the name tag and then stored

3.3. INTERMEDIATE KNOWLEDGE GENERATION 57

in an appropriately named variable. Another extract showing how symptoms are

extracted is shown below:

St r ing p = ”” ;

f o r (i n t j = 0 ; j < d i s e a s e s [i] . GetPSize () ; j++){
p = p + ”\ t \ t \ t \ t \ t<psymptom>” + d i s e a s e s [i] . GetPSym(j) . Trim ()

+ ”</psymptom>\n ” ;
}

Listing 3.5: Extraction of primary symptoms from a disease

Despite the existence of high-ranking sophisticated tools for XML conversion, the exam-

ples given above aim to present the fine detail and simplicity of the internal operations of

the XML generator. Formatting is added to the output to make it human-readable. This

is achieved by indenting elements appropriately.

Generation output

The output file contains a disease list containing a collection of disease objects. This file,

INTERMEDIATE.XML, is located in the program directory and can be viewed using a

text editor. Shown below is an example of an XML file containing one disease, generated

by the XML generator.

<d i s e a s eL i s t>

<d i s ea s e>

<name>Anthrax</name>

<othername>Anthrax</othername>

<symptoms>

<primarySymptoms>

<psymptom>sudden death</psymptom>

<psymptom>f eve r</psymptom>

<psymptom>d i f f i c u l t breathing</psymptom>

<psymptom>d i f f i c u l t y swal lowing</psymptom>

<psymptom>swe l l i n g o f throat and neck</psymptom>

</primarySymptoms>

<secondarySymptoms>

<ssymptom>muscle tremors</ssymptom>

<ssymptom>r ednes s o f mucous membranes</ssymptom>

<ssymptom>blood−s t a ined d i s cha rge from no s t r i l s , mouth and anus

</ssymptom>

</secondarySymptoms>

</symptoms>

3.4. SUMMARY 58

<treatment>Due to the r ap i d i t y o f the d i s e a s e treatment i s seldom

pos s i b l e , a lthough high doses o f p e n i c i l l i n have been e f f e c t i v e in

the l a t e r s t ag e s o f some outbreaks .

</treatment>

</d i s ea s e>

Listing 3.6: Sample output of the XML generator

The generation of an intermediate representation is a critical step in the generation of

a knowledge base system, as the output of this step is used in subsequent stages by the

next module.

3.4 Summary

This chapter focused on describing the design and implementation of the preliminary

modules of the KAT system. First, an overview of the system was given. The knowledge

elicitation and intermediate knowledge generation modules were then discussed, focusing

on the structure, inputs, operations, and outputs of these modules.

Chapter 4

Rule Generation

So far, discussion has focused on the preliminary steps needed to generate an executable

knowledge base. This chapter discusses the design and implementation of the rule gen-

erator, which is responsible for the translation of facts and domain knowledge into an

executable knowledge base. The discussion focuses on how rules are constructed, that

is, the structure and syntax of the resulting knowledge base file. The preliminary steps

discussed in the previous chapter lead up to the generation of a rule base that adheres

to a specific syntax. Consequently, the rule base generation is the most critical step as

the output of this step, that is, the KB, has a direct influence on the performance of an

expert system during consultation.

4.0.1 Rule-based representation scheme

In the preceding chapter, different knowledge representation schemes were discussed. Dis-

cussion focused on the structure of knowledge items, that is, how knowledge is represented,

the characteristics thereof, and the advantages of the different representation schemes.

The output of the generation process is a rule-based knowledge representation. Knowl-

edge is represented using a collection of IF-THEN rules. The use of rules significantly

reduces the complexity of modifying and updating an existing knowledge base [25]. Ad-

ditionally, rules reflect natural decision making, that is, they reflect how humans solve

problems. Highly acclaimed knowledge-based systems like the MYCIN and R1 systems

used rule-based knowledge bases[25; 27]. This confirms the effectiveness of rules in repre-

senting knowledge. For reasons mentioned above, a rule-based representation was chosen

as the executable knowledge base generated by the KAT system. However, as provided

for on the GUI, other representation forms could be implemented as future work.

59

60

4.0.2 Problem domain

The problem domain used to demonstrate the functionality of the KAT system is that

of cattle disease diagnosis. The resulting knowledge base is intended to be used in an

expert system designed to diagnose cattle diseases. This is achieved by querying the

user, who is presumably a cattle owner, about different symptoms observed on an animal.

The expert system must use the facts elicited from the user during consultation together

with the knowledge stored in the knowledge base to try and reach a diagnosis. Upon

reaching a diagnosis, the expert system should then recommend a treatment based on the

diagnosis. It is worth stating that the selection of the problem domain in this case is not

one that involved much thought. This follows the negligible influence or insignificance

of the problem domain on the working of the system, that is, it can be argued that the

problem domain has little significance on the working of the KAT system.

4.0.3 Syntax of rule base

The VP-Expert shell was used to execute the resulting knowledge base for validation pur-

poses. How this was done, and the results thereof, are discussed in detail in a subsequent

chapter. For now, it will suffice to present the structure or syntax of the rules required

by the VP-Expert shell knowledge base.

A VP-Expert shell makes use of .KBS knowledge base file as the knowledge base. The

file contains domain knowledge that the inference engine can execute during consultation.

For this reason, it is possible to have a fully functional expert system in a given domain

by simply plugging in a properly constructed knowledge base file. It is crucial that

the structure of the resulting knowledge base file adheres to the syntax required by the

inference engine. A VP-Expert knowledge base is made up of three sections or statement

blocks: the Action statements block, production rules, and the Query statements block.

The different functions and significance of these blocks are explained below:

Actions block

The Actions block contains statements that control the execution of the inference engine.

These are executed in order of appearance. Examples of such statements include the

FIND statement,and DISPLAY statement.

61

FIND variable - This statement invokes the inference to begin inference by consulting

the knowledge base until a value for variable is found. Consequently, every

knowledge base file should contain a FIND statement as this activates the inference

engine.

DISPLAY "text" - This statement allows text to be displayed on the screen. Text

should be enclosed in double quotation makes. Inserting the tilde character (˜) at

the end of statement has the result of extending the duration the text is displayed

on the screen. VP-Expert allows the value of a variable to be displayed as text by

including the variable name enclosed in curly brackets, and preceded by the hash

character (#) in a DISPLAY statement.

Production rules

The production rules section contains the production rules that are executed by the

inference engine during inference. These effectively represent the domain knowledge and

as a result have a direct impact on the performance of the expert system. Expressed as

IF-THEN statements, the rules are executed on demand during the process of backward

chaining. The design of the VP-Expert shell permits the inclusion of special operators in

the rules. These include mathematical, relational, and logical operators. An example of

a VP-Expert knowledge base rule extracted from a disease diagnosis knowledge base is

shown below:

Rule 1

IF sudden_death = observed

AND fever = observed

AND difficult_breathing = observed

AND difficulty_swallowing = observed

AND swelling_of_throat_and_neck = observed

THEN Disease = Anthrax;

It can be said that the structure of the rule is simple and human-readable. The rule

above simple states that if the listed symptoms, that is, sudden death, fever, difficulty

breathing, difficulty swallowing and swelling of the throat and neck, are observed, then

the conclusion should be reached linking the diagnosis to the disease associated with the

listed symptoms, in this case Anthrax.

62

Query block

The query block contains statements that allow the shell to prompt the user for values of

variables that do not appear in the consequent of some rule. This is needed because there

is virtually no other way the inference engine can determine the value. As a result, this is

achieved by the use of special statements, namely, the ASK statement and the CHOICES

statement.

ASK variable: "prompt"; - Prompts the user for the value of variable. It is

crucial that the prompt be as informative as possible so as to avoid any confusion

on the part of the user with regard to what information is needed and how this

should be entered into the system.

CHOICES variable: list of values; - These statements present a list of pos-

sible values assignable to the variable . It is important to note that the user can

only answer the question asked in the Ask statement with the values supplied in the

list.

Complete knowledge base

Using the statement blocks discussed above, a functional and syntactically correct knowl-

edge base file can be constructed. The code listing below is a typical arrangement of the

statement blocks in a knowledge base file.

ACTIONS

Production Rules

Query statements

Listing 4.1: Arrangment of different blocks

ACTIONS

DISPLAY ”Welcome to the expert system

Press any key to begin .˜”

FIND Today

DISPLAY ”Today i s {#Today } . ” ;

RULE 1

IF Day = monday

THEN Today = workday ;

63

ASK Day : ”What day i s i t ? ” ;

CHOICES Day : sunday , monday ;

Listing 4.2: Example of a simple knowledge base file

In the example given in Listing 4.8, the result of invoking the inference engine using the

given knowledge base file, provided that when prompted, the user selects monday as the

answer to the question posed, will be to display the statement: Today is workday. . This

is because evaluating Rule 1 as specified above, results in the assignment: Today =

workday, owing to the antecedent of the rule yielding a true value. The above example

presents the structure of a VP-Expert knowledge base and the basics of how it is executed.

4.0.4 Automated generation

The successful automation of the generation of production rules is the measure of success

as far as the research aim is concerned. It remains primary, however, that the rules

are meaningful and capable of guiding the inference step toward a valid and accurate

conclusion. This requires the careful formulation of individual rules, and the meticulous

implementation of the algorithms thereof. There is need to emphasize that the resulting

knowledge base should be executable by a suitable inference engine. This will require

the careful generation of various syntactically correct control statements applicable to the

knowledge base linked to the executing inference engine.

Rule types

The KAT system implements several types of rules when constructing a knowledge base

that can be executed by a suitable inference engine. These rules are sufficient to guide the

inference step well enough to reach reasonable conclusions. Explained below are the algo-

rithms for basic rule generation. Additionally, the pseudo-code for these rule algorithms

is supplied. It is important to note that although several types of rules are generated

during the knowledge base generation process, the discussion below focuses on key rules

that form the core of the knowledge base.

RULE Type 1

Diagnos i s = NULL

64

IF Al l main symptoms o f Disease X are pre sent :

THEN Diagnos i s = Disease X

Listing 4.3: Rule type 1

The rule above states that after querying the user for the observed symptoms in an

animal, if all the main symptoms of a disease are reported present, then it should be con-

cluded that the animal has contracted the disease associated with the reported symptoms.

RULE Type 2

IF At l e a s t one secondary symptom of Disease X i s pre sent :

THEN Disease = probable

Listing 4.4: Rule type 2

The rule above states that after querying the user for observed symptoms, if at least one

secondary symptom of the disease has been observed, it should be noted that the disease

is probable. This probable status is used in a subsequent rule to reach a defined con-

clusion.

RULE Type 3

IF Disease X i s probable :

AND At l e a s t one primary symptoms o f Disease X has been observed

THEN Diagnos i s = Disease X

Listing 4.5: Rule type 3

The rule above states that if a disease is probable and at least one of the main symptoms

belonging to the disease has been observed, a conclusion should be reached confirming

the diagnosis.

RULE Type 4

IF Diagnos i s = Disease X:

THEN Recommend Treatment f o r Disease X

Listing 4.6: Rule type 4

Rule 4 simply states that if a diagnosis has been reached, the expert system should pro-

ceed to recommend the assigned treatment for the disease identified.

65

It is believed that the four rule types listed above have the potential to guide an inference

engine toward valid conclusions or diagnoses. Rules not discussed above serve to comple-

ment the rules discussed here and as a result allow for the correct execution of the overall

knowledge base, which in turn enables the inference engine to arrive at a diagnosis.

Invocation of rule generator

• Input

As with the previously discussed XML generator, the rule generator requires that at

least one disease exists in the data store. Consequently the rule generator accepts

a non-empty disease list in XML format, which it uses to generate rules. The list

of diseases can come from an external source like a separate program, or from an

internal source like a separate module within the KAT system. This is a design

decision to achieve modularity and integration of the KAT system with different

applications.

• Function call

The rule generator is invoked from within the user interface thread when the user

instructs the system to start the generation process. The code listing showing how

the rule generator is invoked is given in Listing 4.13.

i f (checkBox3 . Checked) {
// f i n a l r ep r e s en t a t i on

RuleGenerator . Generate () ;

generated = true ;

}

Listing 4.7: Invoking of the rule generator

The generator is set to execute only when it has been specified to do so. This is

achieved through the checking of a Checkbox control on the GUI. In this case,

checkbox3 is the control that enables the user to make this decision. From the

listing above, the rule generator is executed when the control enabling the gener-

ation of an executable knowledge base is checked. Consequently, if this control is

unchecked, the rule generator is not invoked and thus rules are not generated.

It is important to note that when calling the rule generator, unlike with the XML

generator, it is not necessary to specify the mode of generation. This is because

each time the rule generator is invoked, a new knowledge base is constructed us-

ing newly acquired disease knowledge together with previously acquired knowledge.

This recompilation of old knowledge to construct new rules is made possible by

66

the generation of the intermediate knowledge representation. This necessitates the

invocation of the XML generator by default each time the user chooses to generate

a knowledge base. Shown below is an extract showing how a new disease list is

created from a newly generated XML-based knowledge file.

pub l i c s t a t i c void Generate () {
List<Disease> d i s e a s e s = In t e g r a t o r . I n t e g r a t e (path) ;

Generate (d i s e a s e s) ;

}

Listing 4.8: Method definition for Generate method

The code listing above defines an overloaded method that invokes the rule generator

by calling the Generate(List<Disease> diseases) method, which accepts

as input a single argument:

– List<Disease> diseases - a list of disease objects.

A new disease list is created from the contents of the intermediate knowledge repre-

sentation file, the location of which is specified by the path variable. The purpose

of the Integrate(String path) method here is to aid the integration of the

intermediate knowledge generation and knowledge base generation modules in the

KAT system. This method simply reads in the contents of the previously generated

XML-based file from the specified location and compiles these into a list, which is

later passed to the Generate(List<Disease> diseases) method. This in

turn, is responsible for the generation of rules. It is therefore crucial that the path

variable specifies a valid location where a correctly structured XML-based file can

be found.

• Procedure

For the generation of a complete knowledge base to be possible, three groups or

blocks of statements have to be generated: the Action block statements resident to

a VP-Expert knowledge base file, production rules to guide the inference step, and

finaly, Query block statements.

I Generating Action block statements

As discussed earlier, VP-Expert requires the presence of statements to control

the execution of the inference engine. These statements are predefined and

as a result do not change much. The generated statements do however need

to be specific to the knowledge base at hand, that is, the statements must

relate to the domain knowledge semantically. This effectively implies that the

67

DISPLAY statement is succeeded by informative text specific to the problem

domain. Furthermore, the FIND statement should be succeeded by a variable

the value of which is assigned in the consequent of some rule in the knowledge

base. The code listing of the definition of the method responsible for generation

of Action block statements is given in Listing 4.15.

pub l i c s t a t i c S t r ing ShowActionsBlack (Lis t<Disease> xs) {
St r ing ac t i onsB lock = ”” , indent = ”\ t ” ;

ac t i onsB lock += ”\nACTIONS\n” + indent + ”DISPLAY \” Disease

d i a gno s i s \”\n ” ;
ac t i onsB lock += indent + ”NumProbable = 0\n ” ;
f o r (i n t i =0; i < xs . Count ; i++)

act i onsB lock+= indent + varDi s ea se s [i] + ” = 0\n ” ;
ac t i onsB lock += indent + ”FIND Treatment\n ” ;
ac t i onsB lock += indent + ”DISPLAY \”Conclus ion has been reached

:\”\n ” ;
ac t i onsB lock += indent + ”DISPLAY \”Disease : {#Disease }˜\”\n ” ;
ac t i onsB lock += indent + ”DISPLAY \”Treatment : {#Treatment }˜\” ;\

n\n ” ;

re turn act i onsB lock ;

}

Listing 4.9: Method definition for ShowActionsBlock method

The generation of Action block statements, unlike production rules, depends

somewhat on the number of diseases stored in the system. For the purpose

of improving the performance of the expert system during consultation, the

disease list is used to aid the generation of a list of variables used to identify

each disease in the knowledge base. From the code listing above, it can be seen

that the generation of Action block statements simply requires the stringing

together of appropriate keywords together with relevant textual information,

which to some degree relates to the problem domain.

II Generating production rules

Production rules are generated using the rule algorithms discussed in subsection

4.4.1. The generation of production rules constitutes a large portion of the

overall work done by the rule generator in the KAT system. As a result,

production rules utilize the most amount of space in a knowledge base file.

Despite that, it is worth noting that the size of the resulting knowledge base

depends heavily on the number of diseases stored in the KAT system. This is

68

because the elicited disease knowledge is used to assemble the different parts of

generated rules. In the discussion of the structure of IF-THEN rules in Chapter

2, it was emphasized that an individual rule needs to have an antecedent or

condition, and a consequent or conclusion. Disease attributes like the disease

name and symptoms are intelligently used as antecedents and consequents of

different rules. Listed below are steps for the process of constructing a rule in

a KAT-generated knowledge base.

Steps for rule construction:

For each disease in the disease list

1. Create and initialize a rule placeholder Ri

2. Append rule name or number to Ri

3. Append antecedent keyword (IF) to Ri

4. Append premise

5. Append logical operators if any (AND/OR)

6. Append premise

7. Repeat steps 5 to 6 if more premises

8. Append consequent keyword (THEN) to Ri

9. Append conclusions

10. Specify and append ELSE clause if needed

11. Append semicolon character at end (;) to close off rule

The eleven steps listed above implement the rule algorithms as discussed in

subsection 4.4.1, thereby enabling the automated construction of rules. Brief

explanations of the steps listed above are given below. For this discussion, the

construction of a rule of Rule type 1 is assumed.

Explanations:

Step 1: A placeholder or variable for the rule is created and initialized. Ini-

tially, the variable contains nothing but an empty string. On completion

of the execution of the rule algorithm, this variable will hold the entire

rule.

Step 2: The VP-Expert shell requires that every rule has a unique name or

identifier. In the KAT system, sequential rule numbers are used as rule

identifiers. This is achieved by incrementing a rule counter each time a

rule is created. If the particular rule is the first to be generated, it will

69

consequently have the identifier: 1.

Step 3: The VP-Expert shell, in addition requires that every rule contains

predefined keywords to enable the identification of rule parts by the infer-

ence engine. The IF keyword is one of such keywords. As emphasized in

previous sections, this has to precede the first premise of a rule.

Step 4: As discussed, Rule type 1 checks for the presence of all the pri-

mary symptoms of a disease during a consultation, if present, the diagnosis

is concluded. In this particular case, symptoms of a particular disease are

combined with relational and mathematical operators, variables, and val-

ues to form premises. These are in turn combined to form the antecedent

of a rule so as to allow the inference engine to narrow down the list of

possible diseases by querying the user for observed symptoms.

Step 5: Logical operators are used to combine the premises of a rule.

Step 6: In principle, a logical operator should be succeeded by a premise.

Step 7: A VP-Expert shell knowledge base rule can contain a maximum of

twenty premises. This limit is exploited in the KAT system.

Step 8: To mark the beginning of a consequent, VP-Expert uses the THEN

keyword.

Step 9: The THEN part of a VP-Expert knowledge base rule can contain

multiple conclusions. These usually take the form of an assignment like:

variable = value.

Step 10: The VP-Expert shell permits the specification of an ELSE clause.

This, if specified, is processed when the evaluation of a rule’s antecedent

yields a false value thereby restricting the execution of the primary conse-

quent in the THEN part of the rule.

Step 11: VP-Expert uses a semicolon character to mark the end of a rule.

The remainder of the rules that make up the knowledge base are constructed

in a similar manner. The semantics vary depending on the function or purpose

of the rule. As highlighted earlier, the size of the resulting knowledge base

depends on the number of diseases stored in the system. The same applies to

some rules, that is, the structure and hence the complexity of a rule depends

on the size and contents of the internally stored disease list. Listed below is a

code snippet of a method that can be used to construct a rule. This has been

included to supplement the discussion above.

//Rule A l o g i c : i f a l l main symptoms are present , then conclude

d i a gno s i s

70

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
St r ing f i n a l r u l e a = ”” , r u l e a = ”” ;

f o r (i n t a = 0 ; a < d i s e a s e s . Count () ; a++){
r u l e a = ”Rule ” + (ruleNumber++) + ”\n” + ”\ tIF ” +

ShowPrimarySymptoms (d i s e a s e s [a] , ”AND”) + ”\n\tTHEN Disease =

” + d i s e a s e s [a] . GetName () + ” ;\n ” ;
f i n a l r u l e a += ru l e a + ”\n ” ;

}

Listing 4.10: Construction of a rule of Rule Type 1

The production rules block is formed as a result of successfully stringing to-

gether the generated rules in the order in which they are generated. In this

case, the same rule is generated for each disease, that is, the number of rules

that implement the logic of the rule above, will be equal to the number of dis-

eases stored. Simple but meaningful production rules are generated using the

approach discussed above. It is worth stating that the design and implemen-

tation of more sophisticated rule algorithms will more often than not result in

the generation of a more robust and knowledgeable rule base. Rules have been

deliberately kept simple to allow the simplified demonstration of the proof of

concept system.

III Generating Query block statements

The Query block as highlighted allows the inference engine to query the user

for values not known to the inference system. Similar to the generation of Ac-

tion block statements, the generation of the Query block statements depends

heavily on the contents of the disease list. This is because the query statements

generated make use of the different symptoms associated with stored diseases.

Furthermore, similar to the generation of the Action block statements, the gen-

eration of Query block statements requires the linking of appropriate keywords

with disease symptoms and appropriate prompt messages. The result of this

is the formation of a standard query statement that can be recognized by the

shell’s inference engine. Listing 4.17 gives the code for the method responsible

for this.

pub l i c s t a t i c s t r i n g ShowQueryBlock (Lis t<Disease> xs) {
St r ing queryBlock = ”\n\n ” ;
S t r ing [] wording = { ”Any s i gn s o f ” , ”Any ” , ” I s the re ” } ;
Random rnd = new Random() ; i n t index = 0 ;

f o r each (Disease d in xs) {
f o r (i n t i = 0 ; i < d . GetPSize () ; i++){

index = rnd . Next (3) ;

71

queryBlock += ”ASK ” + Del imit (d .GetPSym(i) . Trim () .

ToLower () , ’ ’) + ” : \”” + wording [index] + d .

GetPSym(i) . Trim () . ToLower () + ”?\” ;\n ” ;
queryBlock += ”CHOICES ” + Del imit (d .GetPSym(i) . Trim () .

ToLower () , ’ ’) + ” : Yes , No ;\n ” ;
}
f o r (i n t j = 0 ; j < d . GetSSize () ; j++){

index = rnd . Next (3) ;

queryBlock += ”ASK ” + Del imit (d . GetSSym(j) . Trim () .

ToLower () , ’ ’) + ” : \””+ wording [index] + d .GetSSym

(j) . Trim () . ToLower () + ”?\” ;\n ” ;
queryBlock += ”CHOICES ” + Del imit (d . GetSSym(j) . Trim () .

ToLower () , ’ ’) + ” : Yes , No ;\n ” ;
}

}
re turn queryBlock ;

}

Listing 4.11: Method definition for showQueryBlock method

Query statements come in pairs: an ASK statement, and a CHOICES state-

ment. In the KAT system, each pair corresponds to a single symptom belonging

to a particular disease. As a result, the generation of query statements requires

accessing and extracting every single symptom of each and every disease in the

disease list and combining this with textual parts to form syntactically correct

query statements, as done in the method for which the code is given in Listing

4.17.

The result of combining the different blocks discussed above is the formation of an exe-

cutable VP-Expert-recognized knowledge base. It is paramount that the arrangement of

the different blocks is correct and adheres to the VP-Expert specification as described in

subsection 4.3.4.

Generation output

The result of the successful invocation of the rule generator is the generation of a new

knowledge base. This knowledge base is the final output of the KAT system, which can

be loaded into the VP-Expert shell and therefore consulted during inference. The file,

EXECUTABLE.KBS, is located in the program directory and like the other previously

generated files, it can be viewed using a text editor. The results obtained from an attempt

to execute the knowledge base are discussed in Chapter 4.

4.1. SUMMARY 72

4.1 Summary

This chapter discussed the design and implementation of the rule generator. The rep-

resentation scheme, problem domain, and the syntax of the generated knowledge base

was presented. Finally, the construction of rule types and different knowledge parts was

discussed.

Chapter 5

Evaluation of the Knowledge Base

In this chapter, the evaluation of the KAT system is discussed. Focus is on the verification

and validation of the generated output, that is, how the established objectives have been

met. The validity of the knowledge base is tested against a hypothetical inference engine

and subsequently against an actual expert system shell. The limitations identified during

evaluation are discussed. Finally, a discussion on the overall evaluation phase is given.

As discussed in Chapter 2, evaluation of the resulting knowledge is a crucial step in the

knowledge base construction process. This is done in order to verify and validate the

output of the KAT system. Evaluating the generated knowledge base involves ensuring

that the objectives set at the beginning of the project were met. As emphasized, the

project aimed to present an efficient approach to the knowledge representation process

in the development of expert systems by automating the knowledge engineering process.

This has been achieved by developing a tool to enable the automated construction of a

rule-based knowledge base the design and implementation of which was discussed in the

previous two chapters.

5.1 Success criteria

In an attempt to measure the success of the project, success criteria were put in place.

These aim to present the extent to which the developed system fares in representing

knowledge.

73

5.1. SUCCESS CRITERIA 74

5.1.1 Representing knowledge as rules

The construction of a knowledge base involves converting the expertise of human ex-

perts into a symbolic representation that can be executed by a suitable inference engine.

This process usually involves collaboration between one or more human experts and a

knowledge engineer. The human experts provide their expertise, which is intelligently

programmed into a computer program by the knowledge engineer. In a rule-based sys-

tem, this is the process through which facts are converted into knowledge represented as

rules. The KAT system provides functionality to enable this conversion. The analysis

of individual rules in the knowledge base can reveal that expert knowledge, as extracted

from a credible source, has been successfully represented as rules. Listing 5.1 shows a

rule from the knowledge base as generated by the KAT system’s rule generator. The

rule above states that if any of the symptoms listed have been observed, Blackleg disease

should be concluded as the diagnosis.

Rule Black l eg

IF Lameness Loss o f appe t i t e

AND Rapid breath ing

AND Fever

AND Unwi l l i ngnes s to move

THEN Disease = Black leg ;

Listing 5.1: Example rule in the generated knowledge base

According to the information contained on The Cattle Site 1 on the Blackleg disease,

symptoms of the disease include: lameness, loss of appetite, rapid breathing, fever, and

an unwillingness to move. This suggests that the presence of the listed symptoms in an

animal could in turn suggest the possibility of a Blackleg diagnosis. This knowledge has

been successfully represented as an executable rule above. This serves as evidence of the

ability of the developed tool to effectively represent knowledge as rules. Over and above,

the generated knowledge representation was found to be in accordance with the knowledge

obtained from the knowledge source.

5.1.2 Reaching valid conclusions

The development of an expert system is successful if the resulting consultant system effec-

tively represents the expert knowledge that has been programmed into it. This requires

1http://www.thecattlesite.com/diseaseinfo/187/blackleg

5.2. MANUAL EVALUATION 75

that the system successfully transfers expert knowledge to a user during consultation.

Consequently, the execution of the system should result in the inference engine reaching a

valid conclusion, that is, conclusions reached should be in accordance with the conclusion

reachable from consulting the knowledge obtained from knowledge sources. This can be

achieved by constructing a complete and extensive knowledge base to enable the inference

engine to draw an acceptable conclusion each time. This ability is primary as it has a

direct influence on the performance of the overall expert system. Considering the scope of

the expert knowledge as contained in the knowledge source and the scope of the research

project, the resulting knowledge base as generated by KAT system was found to allow for

valid deductions. This is demonstrated in subsequent sections.

5.1.3 Execution by suitable inference engine

Run-time evaluation is used in an attempt to demonstrate the knowledge base’s potential

for execution by an inference engine. Chau et al. [10] demonstrated that while effective

structuring of knowledge bases is crucial for expert system design, reliable evaluation

must take place for the acceptance of artificial intelligence technology. Evaluation is de-

scribed to have two phases: verification and validation. Verification involves making sure

the specifications put in place are met by the implemented system, whereas validation

involves ensuring that the system correctly performs the intended purpose, that is, it is

concerned with the accuracy and correctness of the end result. Chau et al. [10] addi-

tionally highlighted the importance of the mentioned steps and also the need to engage

in such. The common approach has been to perform multiple tests with knowledge engi-

neers and domain experts, which at times has proven impractical due to time constraints

and lack of expert resources. Over and above, it was found that the approach did not

guarantee the discovery of all errors, thus further complicating the process. A run-time

evaluation was proposed as a supposedly efficient approach; this can be done by using a

specially designed inference engine to execute the knowledge base, or by using a carefully

selected expert systems shell. This was the approach taken to verify and validate the KB

developed by the KAT system.

5.2 Manual evaluation

As emphasized, the project mainly focused on the automated construction of an executable

knowledge base and not necessarily on the other components that make up an expert

5.2. MANUAL EVALUATION 76

system. Therefore, to argue for the possibility of automated knowledge base construction,

the introduction of a hypothetical inference engine is justified. This is done to show the

potential for execution of the automatically generated knowledge base. Figure 5.1 shows

the structure of the proposed inference engine.

Figure 5.1: Structure of proposed inference engine

The proposed engine features a rule base of production rules, a working memory, and

internal modules that enable inference to take place. These include pattern matching

and conflict resolution. The engine uses pattern matching to repeatedly match facts and

data against the production rules to draw conclusions. This is the basic functionality of

an inference engine. In the working memory, a hypothetical list is stored. In this list,

the system stores probable diseases depending on the symptoms reported at any given

point in time. Production rules govern the insertion of diseases in the intermediate list.

Once all observed symptoms have been reported and entered into the system, the system

consults the list of diseases and employs conflict resolution strategies in an attempt to

narrow down the intermediate list of probable diseases to a single element: a single prob-

able disease. It is worth stating that the correct functionality of the different components

shown in Figure 5.1 is critical for the effectiveness of the proposed inference engine. To

demonstrate this, a simple case is discussed below.

Given a list of three diseases with associated symptoms:

1. Disease name - Anaplamosis

Primary symptoms - Amenia, fever, weight loss, breathlessness

Secondary symptoms - Uncoordinated movements, Abortion, Death

5.2. MANUAL EVALUATION 77

2. Disease name - Foot-and-mouth disease

Primary symptoms - Formation of vesicles, blisters in the mouth and feet, lame-

ness

Secondary symptoms - Lacrimation, Fever, Mycarditis, sudden death

3. Disease name - Lumpy-skin disease

Primary symptoms - Lumpy skin, Emaciation, swollen legs, sores, Pneumonia

Secondary symptoms - Loss of milk production, Infertility, Abortion, damage to

hide

and a list of hypothetical symptoms reported during consultation:

• Fever

• Abortion

• Breathlessness

• Death

• Swollen legs

a carefully constructed set of rules can enable the inference engine to draw conclusions

that can be considered to be valid. For each reported symptom, adding the associated

disease in an intermediate list stored in the working memory, as described above, allows

the system to narrow down the list of probable diseases. A simple rule that can be used

to induce this behavior is shown below:

Rule Fever

IF

Symptom == Fever

THEN

pd 1 = new ProbableDisease (Anaplamosis , SymGroup = primary) ;

pd 2 = new ProbableDisease (Foot−and−mouth , SymGroup = secondary) ;

Po s s i b l eD i s e a s e s .Add(pd 1) ;

Po s s i b l eD i s e a s e s .Add(pd 2) ;

Listing 5.2: Example rule for executation by hypothetical inference engine

The rule above can be used to specify the behavior of the hypothetical inference en-

gine when Fever is one of the symptoms reported by a user during consultation, as

5.2. MANUAL EVALUATION 78

the rule name suggests. The rule states that when the presence of the Fever symp-

tom has been confirmed, shown by the line: Symptom == Fever, new probable dis-

eases should be added into the intermediate list of possible diseases discussed earlier.

Probable diseases in this case are diseases to which the Fever symptom is associated.

Variables pd 1 and pd 2 are placeholders for the probable diseases identified. The line

PossibleDiseases.Add(pd 2) shows how a probable disease would be added into

the list of possible diseases kept in the working memory. The addition of a disease in the

list involves 1) the creation of an instance of a hypothetical object used to store a probable

disease; 2) specifying the name of the disease to which the identified symptom is associ-

ated, in this case fever, and 3) specifying the symptom group of the disease in which the

identified symptom belongs. These could be achieved by executing the line: pd 1 = new

ProbableDisease(Anaplomosis, SymGroup = primary) for the Anaplamosis

disease as shown in the rule above. This would essentially create a Propable disease object

with the relevant parameters. In this example, it can be seen from the list of diseases

above that Fever is part of the main symptoms group of the Anaplamosis disease, and

part of the secondary symptoms group of the Foot-and-mouth disease. This is done to

establish a weighting system. As primary symptoms are direct results of a pathogen in

an animal, these have a higher weighting when compared to their counterparts. As a

result, adding both diseases as shown in the consequent of the rule above will result in

the Anaplamosis disease having a higher weighting in the disease list compared to the

Foot-and-mouth disease.

To arrive at a diagnosis, the list of possible disease would be analyzed. The disease with

the highest frequency and weighting can be concluded as the diagnosis. A high frequency

for a given disease would imply that most reported symptoms were associated with the

disease. A significantly higher total weighting for a disease would imply that most reported

symptoms were associated with the disease. This can also mean that most of the reported

symptoms belonged to the primary symptoms group of the disease, thereby making the

disease the most likely diagnosis. As frequency increases with an increase in weighting, the

disease with the highest weighting will be the disease with the highest frequency, therefore

eliminating the possibility of occurrences where the highest frequency and weighting are

distributed across two diseases. Given the case above, it can be shown that the approach

discussed can allow for valid conclusions to be reached. For this exercise, it will suffice to

assume that rules in the knowledge base are similar to the rule discussed above. Shown

below is the state of the working memory of the hypothetical inference engine before and

after inference using the approach discussed above.

5.3. EVALUATION USING VP-EXPERT SHELL 79

Symptoms repor ted : Fever , Abortion , Brea th l e s sne s s , Death , Swol len l e g s

Symptom weight ing : primary = 2 secondary = 1

State be f o r e i n f e r e n c e :

=====================

Contents o f l i s t : []

D iagnos i s : nu l l

State a f t e r i n f e r e n c e :

=====================

Contents o f l i s t : [(Anaplamosis , primary) (Foot−and−mouth , secondary) (Lumpy−
skin , secondary) (Anaplamosis , primary) (Anaplamosis , secondary) (Foot−and−
mouth , secondary) (Lumpy−skin , secondary)]

Diagnos i s : Anaplamosis

Listing 5.3: State of working memory before and after inference

The listing above shows the states of the working memory of the proposed inference

engine, while Table 5.1 gives the frequency and weighting values for each disease.

Table 5.1: Results of inference step by the inference engine
Disease Frequency Weighting
Anaplamosis 3 5
Foot-and-mouth 2 2
Lumpy-skin 2 2

From the illustration of the different states above, it can be seen that the diagnosis reached

is justified. Moreover, analyzing the contents of the intermediate list shows that most

reported symptoms were associated with the Anaplamosis disease, hence the conclusion.

From Table 5.1, it can be seen that the Anaplamosis disease has the highest frequency

and weighting, thereby suggesting that it is the most likely diagnosis.

Although hypothetical and rudimentary, the approach discussed above shows that valid

conclusions can be made. The use of a hypothetical inference engine to demonstrate the

credibility of a knowledge base is not uncommon; hence, the use of this method in this

project.

5.3 Evaluation using VP-Expert shell

It is argued that the use of an expert system shell during development allows for the

creation of practical systems [10]. This further allows the developer to separate concerns

5.3. EVALUATION USING VP-EXPERT SHELL 80

and shift focus on developing a specific confined set of components instead of developing

every single required component. Chau et al. [10] argued that the employment of run-

time evaluation enables the detection of errors at various stages during and after the

development process. An integration model is proposed where a confined set of knowledge

base files are integrated with an expert system shell to demonstrate the efficiency of run-

time evaluation. The author shows that integration is feasible through a series of module,

integration and system tests. It is crucial that the different modules work well separately.

However, it is equally important that the system as a whole works as specified. In this

case, the successful generation of an executable knowledge base is evidence that suggests

that the different modules that make up the KAT system function properly and by doing

so, enable the system as a whole to fulfill its intended purpose.

A VP-Expert expert system shell was used to investigate the potential of the generated

knowledge base to be executed. This required altering the structure and syntax of the

generated knowledge base, to allow the VP-Expert shell to recognize the knowledge base.

Alteration included restructuring of rules to adhere to the VP-Expert specification, in-

clusion of control and query statements in the generation of the knowledge base, and

changing the file extension of the generated knowledge base file to suit the VP-Expert

shell.

5.3.1 Running the VP-Expert shell

The VP-Expert shell was designed to be run on DOS. At start-up, a main menu is

displayed allowing the user to select different functions offered. Selecting the Consult

option invokes the shell to execute the expert system on the current knowledge base. A

list of available knowledge base files is displayed. These are stored as knowledge base files

(.KBS) in the program’s directory. Selecting one of the knowledge bases invokes the shell

to start a consultation session using the selected knowledge base. Generated knowledge

base files were loaded into the shell in an attempt to test the validity of the output of the

KAT system.

5.3.2 Test cases

Running the VP-Expert shell using the generated knowledge base file as the knowledge

base yielded satisfactory results. In almost all the cases, the conclusion reached was in

5.3. EVALUATION USING VP-EXPERT SHELL 81

accordance to the conclusion in the knowledge source. In cases where an incorrect diagno-

sis was given, this could be attributed to the limitations inherent in the inference engine

used. This is explained in more detail shortly. Discussed below are test cases and the

results obtained to show evidence of the credibility of the generated knowledge base.

Three diseases were added into the KAT system.

1. Disease name - Anthrax

Primary symptoms - Sudden death, fever, difficulty breathing, difficulty swallow-

ing

Secondary symptoms - Muscle tremors, redness of mucous membranes, blood-

stained discharge from orifices

2. Disease name - Botulism

Primary symptoms - Weak muscles, immobility, sticking out of tongue, salivation

before death

Secondary symptoms - Severe illness, stiff and slow walking, rough coat, thinness,

sunken eyes

3. Disease name - Brucellosis

Primary symptoms - Abortion in late pregnancy, infertile cows, infertile bulls

Secondary symptoms - Swelling of testicles, swollen joints

Table 5.2 shows the distribution of symptoms across diseases. It should be noted that

the character P denotes a primary symptom and the character S denotes a secondary

symptom.

Rules were generated using the disease information stored in the system. The resulting

knowledge base was loaded as is into the VP-Expert shell. Sets of hypothetical symptoms

were supplied to the expert system during querying. After inference, the conclusion or

diagnosis made in each case was noted. The diagnoses reached were found to be accurate,

hence validating the knowledge base generated by the KAT system. Discussed below are

the results for the different cases:

Case 1

Listing 5.4 shows the prompts used by VP-Expert shell to query the user for symptoms.

The answers supplied by the user were matched against the rules in the knowledge base,

5.3. EVALUATION USING VP-EXPERT SHELL 82

Table 5.2: Distribution of symptoms across diseases.
Symptom Anthrax Botulism Brucellosis
Abortion in late pregrancy P
Blood-stained discharge S
Difficult breathing S
Difficulty swallowing S
Fever P
Immobility P
Infertile bulls P
Infertile cows P
Muscle tremors S
Redness of mucous membranes S
Rough coat S
Salivation before death P
Severe illness S
Sticking out of tongue P
Stiff and slow walking S
Sudden death P
Sunken eyes S
Swelling of testicles S
Swollen joints S
Thinness S
Weak muscles P

allowing the expert system to reach a conclusion.

Any s i gn s o f sudden death ? >Yes No

I s the re f e v e r ? Yes >No

Any s i gn s o f abort ion in l a t e pregnancy ? >Yes No

I s the re i n f e r t i l e cows? Yes >No

Any s i gn s o f weak muscles ? >Yes No

Any immobi l i ty ? Yes >No

Any muscles tremors ? Yes >No

I s the re rednes s o f mucous membranes? >Yes No

I s the re blood−s t a ined d i s cha rge from o r i f i c e s ? Yes >No

Any d i f f i c u l t breath ing ? Yes >No

Any d i f f i c u l t y swal lowing ? Yes >No

Any s i gn s o f swe l l i n g o f throat and neck ? Yes >No

Any s i gn s o f i n f e r t i l e b u l l s ? Yes >No

Any s t i c k i n g out o f tongue ? Yes >No

Any s i gn s o f s a l i v a t i o n be f o r e death ? Yes >No

Listing 5.4: Querying of symptoms by VP-Expert

5.3. EVALUATION USING VP-EXPERT SHELL 83

It can be seen from the information supplied above that the user reported symptoms:

sudden death, abortions in late pregnancy, weak muscles, and redness of mu-

cous membranes. Additionally, it can be seen from the table showing the distribution

of symptoms that two of the symptoms listed belong to the Anthrax disease, one to the

Brucellosis disease, and a different one to the Botulism disease. The most likely diagnosis

in this case would be Anthrax. This is because the highest number of reported symptoms

from a single disease are associated with the Anthrax disease. It can be argued that a

better approach could be used, however, the rule types were constructed to allow for this

kind of behavior. Shown below is a screenshot of the VP-Expert shell at the end of a

consultation session. As expected, the expert system reported Anthrax as the most likely

diagnosis.

Figure 5.2: Screenshot of VP-Expert interface showing an Anthrax diagnosis

The topmost green rectangular section of the screen shows the conclusion reached by the

expert system. The disease name and treatment suggested are shown as the inference step

concludes. This result contributes to the overall credibility of the generated knowledge

base.

5.3. EVALUATION USING VP-EXPERT SHELL 84

Case 2

A second case presents a different set of symptoms presented to the expert system.

Any sudden death ? Yes >No

I s the re abort ion in l a t e pregnancy ? Yes >No

I s the re weak muscles ? >Yes No

Any immobi l i ty ? >Yes No

Any s t i c k i n g out o f tongue ? >Yes No

Any s i gn s o f s a l i v a t i o n be f o r e death ? >Yes No

Listing 5.5: Querying of symptoms by the expert system in the second test case

In this example, the user reported symptoms the following symptoms: weak muscles,

immobility, sticking out of tongue, and salivation before death. From the table

of symptoms, it can be seen that these are the primary symptoms of the Botulism dis-

ease. Consequently, a diagnosis of the disease Botulism is expected. which is exactly the

diagnosis given by the expert system.

Figure 5.3: Screenshot of VP-Expert interface showing an Botulism diagnosis

A diagnosis together with the suggested treatment is given at the end of the inference step.

It is worth stating that the VP-Expert shell places a limit on the number of characters

5.3. EVALUATION USING VP-EXPERT SHELL 85

in strings used in the knowledge base. For this reason, string values have been kept

short. On an ideal system, more informative descriptions of diagnoses would be provided,

however, this is not possible using the VP-Expert shell.

Case 3

A third and final case is presented to demonstrate the validity of the knowledge base. A

small set of symptoms was presented to the expert system.

Any sudden death ? >Yes No

Any f e v e r ? Yes >No

I s the re abort ion in l a t e pregnancy ? >Yes No

I s the re i n f e r t i l e cows? Yes >No

I s the re weak muscles ? Yes >No

Any muscles tremors ? Yes >No

I s the re rednes s o f mucous membranes? Yes >No

I s the re blood−s t a ined s ta ined d i s cha rge from o r i f i c e s ? Yes >No

Any d i f f i c u l t breath ing ? Yes >No

Any d i f f i c u l t y swal lowing ? Yes >No

Any s i gn s o f swe l l i n g o f throat and neck ? Yes >No

Any s i gn s o f i n f e r t i l e b u l l s ? Yes >No

Any immobi l i ty ? Yes >No

Any s t i c k i n g out o f tongue ? Yes >No

Any s i gn s o f s a l i v a t i o n be f o r e death ? Yes >No

Any seve r e i l l n e s s ? Yes >No

Any rough coat ? Yes >No

I s the re th inne s s ? Yes >No

I s the re sunken eyes ? Yes >No

Listing 5.6: Querying of symptoms by the expert system in the third test case

In this case, only two symptoms were reported: sudden death and abortion in late

pregnancy. This example demonstrates the expected functionality of the expert system

shell. As a small amount of information is supplied by the user, the shell proceeds to

prompt the user for more symptoms in an attempt to gather enough information. This

is done regardless of the fact that the two symptoms were supplied fairly early on during

the querying of symptoms. In any case, an interesting diagnosis is reached, or rather none

is reached.

The Undecided conclusion can be argued to be a satisfactory one. Since two primary

symptoms of two different diseases are supplied, the expert system can either conclude

5.3. EVALUATION USING VP-EXPERT SHELL 86

Figure 5.4: Screenshot of VP-Expert interface showing an Undecided conclusion

that both diseases are probable or give an undecided conclusion. The latter is in fact the

case in this example.

5.3.3 Limitations of VP-Expert expert system shell

The VP-Expert expert system shell was developed and released some decades ago by

Paperback Software International. It soon rose into popularity in both educational and

commercial fields. As mentioned earlier, two genres of the software package are available: a

commercial version, and a student version. The student version was used for the evaluation

of the generated knowledge base. As a technology that dates back more than two decades

ago, the VP-Expert shell presented some limitations during the evaluation of the generated

knowledge base. These presented challenges during the evaluation process. The first

of these is the inability prioritize or choose between conflicting conclusions, that is, no

strategies have been put in place to allow preference of one conclusion over another in

the occurrence of a clash. In this case, unless specified in the knowledge base, VP-

Expert finds it difficult to make a conclusion if no additional information is provided

to help differentiate the conflicting diseases. In addition, the short-circuit evaluation

employed by the shell was found to present difficulties in some cases, which ultimately

5.4. DISCUSSION 87

led to incorrect conclusions. An example of these is the case where the shell prematurely

concludes the consultation session once some of the primary symptoms of a given disease

have been matched, thereby neglecting the possibility of reaching a different diagnosis had

all symptoms been queried. For some of these limitations, alterations in the knowledge

base were enough to eliminate the problem. Over and above that, as mentioned earlier,

the VP-Expert shell places a limit on the length of character sequences or text values

used in the knowledge base. This hindered the provision of more informative descriptions

as well as the construction of more complex rules. Consequently, several of the incorrect

diagnosis reached during testing could be attributed to some of the limitations presented

by the VP-Expert shell.

5.4 Discussion

As noted in Chapter 3, the evaluation of the generated rule base was seen as a critical step

in the overall process of knowledge base generation. This presented a means to verify and

validate the resulting rule base. It was shown that by combining the functionality and

output of the different modules that make up the KAT system, an executable knowledge

base could be generated. The generated knowledge base was found to meet the success

criteria given earlier in this chapter. The potential to evaluate the knowledge base in more

ways than one highlights the flexibility and extensibility of the system and the output

thereof. It was shown that by simply making minor changes to the structure and syntax of

the generated knowledge base file, the output of the system could be tailored to different

executing programs, thereby allowing the knowledge base to be evaluated on multiple

systems. Over and above, there is the need to highlight the indivisible nature of an

expert system, which was found to present difficulties during the development of the rule

generator. The two main components of an expert system, namely, the inference engine

and the knowledge base, are designed to work closely together to achieve a common goal.

As a result, this requires that both components are able to interact seamlessly with one

another in an attempt to establish cohesion. This in turn requires that the development

of one component happens in conjunction with the development of another. Attempting

to construct an executable knowledge base in isolation stimulated much thought on the

functionality of a suitable executing program. This notably highlighted the indivisible

nature of an expert system.

5.5. SUMMARY 88

5.5 Summary

This chapter discussed the evaluation of the generated knowledge base. First, success

criteria were presented. Next, manual evaluation of the knowledge base was discussed

with the discussion focusing on the structure and functionality of a hypothetical inference

engine believed to be suitable for the execution of the generated knowledge base. A

discussion of the run-time evaluation using a VP-Expert expert system shell was given.

Test cases were used to demonstrate the credibility of the knowledge base. Additionally,

the limitations presented by the expert system shell used were briefly discussed. Finally,

a discussion on the overall evaluation process was given.

Chapter 6

Conclusion

The research project was centered around the knowledge engineering process in expert

system development. This involved the investigation of the use of different knowledge base

construction tools available, research on various types and examples of expert systems,

their domains, and the knowledge representation schemes used to represent knowledge.

The project’s primary aim was to present an efficient approach to knowledge representa-

tion in the development of expert systems by developing a modularized tool to enable the

automated construction of knowledge bases.

The design and implementation of the system was discussed with emphasis on the func-

tionality of the different components that together enabled the generation of an executable

knowledge base. The developed system was tested and was found to meet the project ob-

jectives.

6.1 Research objectives

As noted, the project aimed to investigate the possibility of automating the knowledge en-

gineering process in the development of expert systems. This would enable the automated

construction of an executable knowledge base. By doing so, the role of the knowledge en-

gineer would be assumed by the developed tool. Additionally, the developed tool would

make possible extension of a knowledge base by domain experts. It was required that the

generated knowledge base 1) successfully represents knowledge as rules; 2) is executable

by a suitable inference engine, and 3) allows for valid conclusions to be reached.

89

6.2. FUTURE WORK 90

It was shown that the developed system meets the defined objects. The generated knowl-

edge base was found to represent the domain knowledge contained in the knowledge

sources. Furthermore, the developed tool allowed the effortless extension of the generated

knowledge base by domain experts. Additionally, it was shown that by introducing minor

changes to the structure of the generated knowledge base, the knowledge base could be

tailored to different executing programs, hence, confirming the knowledge base executable.

Over and above, it was shown that valid conclusions could be reached from the execution

of the generated knowledge base.

6.2 Future work

Despite meeting the project objectives, areas of improvement were identified during the

development and evaluation of the KAT system.

• Currently, the developed tool implements a rule-based knowledge representation

scheme. Implementing additional alternative schemes would significantly extend

and improve the functionality of the tool. This could allow the use of a hybrid

representation scheme, thereby improving the credibility of the generated knowledge

base. Alternative representation forms have been provided for on the GUI.

• The KAT system makes use of Textfield controls to facilitate the entry of new

knowledge into the system. Implementing alternative ways of data input could

improve the usability of the system. Alternative ways include input from a text file,

or from an online source.

• To improve the quality and credibility of the generation of knowledge base, a dy-

namic approach could be taken during the elicitation process. By using information

contained in the knowledge base to facilitate the elicitation process, the system

could elicit from the domain expert additional items of information that could help

supplement the knowledge already obtained, thereby enabling the generation of a

more complex and comprehensive knowledge base.

• Introducing confidence factors in the rules generated could improve the inference

process during execution of the knowledge base by executing programs.

Bibliography

[1] Abdullahi, M., Al-Mattarneh, H. M. A., Hassan, A. H., Hassan, M. A.,

and Mohammed, B. S. A review on expert systems for concrete mix design.

The International Conference on Construction and Building Technology 21 (2008),

231238.

[2] ADELI, H. Insight 2+. Computer-Aided Civil and Infrastructure Engineering 2, 2

(1987), 173–174.

[3] Akram, M., Rahman, I. A., and Memon, I. A review on expert system and

its applications in civil engineering. International Journal of Civil Engineering and

Built Enviroment 1, 1 (2014), 24–29.

[4] Arnold, K., and Gosling, J. The Java Programming Language. Addison-Wesley,

1998.

[5] Beckert, B. Introduction to Artificial Intelligence: First-order Logic. Online, 2005.

Accessed on: May 20, 2014. Available from: http://www.skit.edu.in/menu/

CSE/r09/AI/08FirstOrderLogic.pdf.

[6] Bennett, J. S. ROGET: a knowledge-based system for acquiring the conceptual

structure of a diagnostic expert system. Journal of Automated Reasoning 1 (1985),

49–74.

[7] Boose, J. H. A survey of knowledge acquisition techniques and tools. Knowledge

Acquisition 1 (1989), 3–37.

[8] Brachman, R. J., and Levesque, H. J. Knowledge Representation and Reason-

ing. Morgan Kaufmann, 2004.

[9] Chandana, S., Mayorga, R. V., and Chan, C. W. Automated knowledge

engineering. Engineering and Technology 39 (2008), 511–520.

91

BIBLIOGRAPHY 92

[10] Chau, K. W., and Yang, W.-W. Structuring and evaluation of vp-expert based

knowledge bases. Engineering Applications of Artificial Intelligence 7 (1994), 447–

454.

[11] Dewanto, Satrio, and Lukas, Jonathan. Expert system for diagnosis pest and

disease in fruit plants. EPJ Web of Conferences 68 (2014), 00024.

[12] Diederich, J., and Rumann, I. KRITON: a knowledge-acquisition tool for expert

systems. Int. J. Man-Machine Studies 26 (1987), 29–40.

[13] Duda, R. O., and Shortlife, E. H. Expert systems resarch. Science 220 (1983),

261–268.

[14] Exsys Inc. Exsys Corvid Expert System Development Tool. Online, 2011.

Accessed on: October 15, 2014. Available from: http://www.exsys.com/

exsyscorvid.html.

[15] Ford, K., Canas, A., Jones, J., Stahl, H., Novak, J., and Adams-Webber,

J. ICONKAT: an integrated constructivist knowledge acquisition tool. Knowledge

Acquisition 3, 2 (1991), 215 – 236.

[16] Frederick, H.-R., Waterman, D., and Lenat, D. Building Expert Systems.

Addison-Wesley Longman Publishing Co., Inc., 1983.

[17] Friederich, S., and Gargano, M. Expert Systems Design and Development

Using VP-Expert. Wiley, 1989.

[18] HTML.net. HTML. Online. Accessed on: May 20, 2014. Available from: http:

//html.net/.

[19] Iancu, E., Mates, D., and Voicu, V. Considerations regarding the expert

systems in the economy and the use method of the production systems based on

rules. Journal of Applied Computer Science & Mathematics 1 (2010), 63–65.

[20] Japanese Technology Evaluation Center. The Applications of Expert Sys-

tems. Online, May 1993. Accessed on: May 20, 2014. Available from: http:

//www.wtec.org/loyola/kb/c1_s2.htm.

[21] Kaetzel, L., and Clifton, J. R. Expert/knowledge based systems for materials

in the construction industry: State-of-the-art report. Materials and Structures 28

(1995), 160–174.

BIBLIOGRAPHY 93

[22] Kahn, G., Nowlan, S., and McDermott, J. MORE: An intelligent knowl-

edge acquisition tool. In Proceedings of the Ninth International Joint Conference on

Artificial (1985).

[23] Kurmangaziyeva, L. T., Utenova, B. E., and Mailybayeva, A. J. Expert

systems and their use in oil and gas complex. Life Science Journal 11 (2014), 392–

395.

[24] Martin, J., and Oxman, S. Building Expert Systems: A tutorial. Prentice-Hall,

1988.

[25] Matsatsinis, N., Doumpos, M., and Zopounidis, C. Knowledge acquisition

and representation for expert systems in the field of financial analysis. Expert Systems

with Applications 12, 2 (1997), 247 – 262.

[26] McCarthy, J. LISP 1.5 Programmer’s Manual. MIT Press, 1965.

[27] McDermott, J. R1: A rule-based configurer of computer systems. Artificial

Intelligence 19 (1982), 39–88.

[28] McNamee, P., Mayfield, J., Finin, T., Oates, T., Lawrie, D., Xu, T., and

Oard, D. KELVIN: a tool for automated knowledge base construction. In Proc.

Conf. of the North American Chapter of the Association for Computational Lin-

guistics: Human Language Technologies (June 2013), Association for Computational

Linguistics. (demonstration paper).

[29] Microsoft. ASP.NET. Online. Accessed on: May 20, 2014. Available from:

http://www.asp.net/.

[30] Microsoft. Introduction to the C# Language and the .NET Framework. Online.

Accessed on: October 15, 2014. Available from: http://msdn.microsoft.com/

en-us/library/z1zx9t92.aspx.

[31] Microsoft. Windows Forms. Online. Accessed on: October 15, 2014. Avail-

able from: http://msdn.microsoft.com/en-us/library/dd30h2yb(v=

vs.110).aspx.

[32] Netscape Communications Corporation. JavaScript. Online. Accessed on:

May 20, 2014. Available from: http://www.javascriptkit.com/.

[33] Niwa, K., Sasaki, K., and Ihara, H. An experimental comparison of knowledge

representation schemes. The AI Magazine 5 (1984), 29–36.

BIBLIOGRAPHY 94

[34] Oncontext. First Order Predicate Calculus. Online. Accessed on:

May 30, 2014. Available from: http://www.ontotext.com/factforge/

first-order-predicate-calculus.

[35] Pop, D., and Negru, V. An extensible environment for expert system de-

velopment. In Knowledge-Based Intelligent Information and Engineering Systems,

V. Palade, R. Howlett, and L. Jain, Eds., vol. 2773 of Lecture Notes in Computer

Science. Springer Berlin Heidelberg, 2003, pp. 1016–1022.

[36] Rafea, A., and Hazman, H. H. M. Automatic knowledge acquisition tool for irri-

gation and fertilization expert systems. Expert Systems with Applications 24 (2003),

49–57.

[37] Rouse, M. First-order Logic. Online, September 2005. Accessed on: May

20, 2014. Available from: http://whatis.techtarget.com/definition/

first-order-logic.

[38] Sawyer, B., and Foster, D. L. Programming Expert Systems in Pascal. Wiley

Press, 1986.

[39] Shortlife, E. H. Computer-Based Medical Consultations: MYCIN. Elsevier, 1976.

[40] Sowa, J. F. Principles of Semantic Networks. Morgan Kaufmann, 1991.

[41] Tanwar, P., Prasad, D. T., and Datta, D. K. Hybrid technique for effective

knowledge representation & a comparative study. International Journal of Computer

Science & Engineering Survey 3 (2012), No. 4.

[42] ten Berge, T., and van Hezewijk, R. Procedural and declarative knowledge.

Theory & Psychology 9 (1999), 605–624.

[43] van de Gevel, A. J. W., and Noussair, C. N. The Nexus Between Artificial

Intelligence and Economics. Springer, 2013.

[44] w3Schools.com. XML. Online. Accessed on: May 20, 2014. Available from:

http://www.w3schools.com/xml/default.ASP.

[45] Walden, M. Sports Injury Clinic. Online, 2000. Accessed on: May 20, 2014.

Available from: http://www.sportsinjuryclinic.net/.

